首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphokinase activity from the calf ovary cytosol (105000 X g supernatant fraction) has been resolved by chromatography and polyacrylamide gel electrophoresis into two major protein kinases, PK-H1 and PK-H2, both dependent on adenosine 3':5'-monophosphate (cyclic AMP). The enzymes have similar molecular weights (230000) and substrate specificities but differ in their cyclic-AMP-dependency and stimulation by cyclic AMP. The differences have been explained by the presence in PK-H1 of a unique cyclic-AMP-binding protein which has little catalytic activity associated with it. The cyclic-AMP-binding protein has a high affinity for cyclic AMP and in addition is able to inhibit the activity of the isolated catalytic subunit. The ovarian cyclic-AMP-dependent protein kinases have properties similar to those found in other tissues. They can be dissociated into catalytic and regulatory subunits and are inhibited by a heat-stable protein inhibitor isolated from rabbit skeletal muscle. Preincubation of the cytosol with high levels of cyclic AMP resulted in additional cyclic-AMP-dependent protein kinases and cyclic-AMP-binding proteins which include protein kinases and binding proteins of greater than 400 000 molecular weight.  相似文献   

2.
The major cAMP-binding proteins isolated from [35S]methionine-labeled S49 mouse lymphoma cells or MDBK bovine kidney cells correspond in isoelectric point and apparent molecular weight to the regulatory subunit (R) of type I cAMP-dependent protein kinase. These proteins were compared directly by two-dimensional gel electrophoresis and by two-dimensional gel electrophoresis of peptides generated either from native R with thermolysin and chymotrypsin or from denatured R with papain. Both the undigested proteins and all their major peptides were identical in charge and apparent molecular weights, indicating a very high degree of structural homology.  相似文献   

3.
A protein fraction of molecular weight 33,000-36,000 accounted for about 40% of the cyclic AMP binding capacity of the cytoplasmic extract of human tonsillar lymphocytes. This cyclic AMP binding fraction (designated as R' protein [10]) proved to be a proteolytic fragment of the regulatory subunit of the cyclic AMP-dependent protein kinase. The Scatchard plot of cyclic AMP binding by the isolated R' fraction indicated positive cooperativity. 50% saturation of the cyclic AMP binding sites was achieved at about 4 . 10(-9) M cyclic AMP. An upward concave curve was obtained in the Scatchard plot of cyclic GMP binding by the R' protein. These results strongly suggest that more than one molecule of cyclic nucleotide can be bound by one molecule of the R' protein. The R' protein could not be detected in the physiological salt extract of isolated nuclei in which type I cyclic AMP-dependent protein kinase was the dominating isoenzyme (according to the terminology used by Corbin, S.D., Keely, S.L. and Park, C.R. (1975) J. Biol. Chem. 250, 218-225). The cytoplasm of cells contained a higher amount of type II than type I regulatory subunit. In the cytoplasm the predominant part of RII was present in the dissociated state in all preparations, while when the RII was found in the nucleus it was mainly in the holoenzyme form. The R' protein presumably from the dissociated type II regulatory subunit.  相似文献   

4.
Structural lesions in cAMP-binding sites of regulatory (R) subunit of cAMP-dependent protein kinase caused identical increases in apparent constants for cyclic nucleotide-dependent kinase activation in preparations from cells that were hemizygous or heterozygous for mutant R1 subunit expression. No wild-type kinase activation was observed in extracts from heterozygous mutant cells. This "dominance" was investigated by characterizing expression of wild-type and mutant R1 subunits and properties of protein kinase from S49 mouse lymphoma cell mutants heterozygous for expression of wild-type R1 subunits and R1 subunits with a lesion (Glu200) that inactivates cAMP-binding site A. By both studies of cAMP dissociation and two-dimensional gel analysis, wild-type R subunits comprised about 35% of total R1 subunits in heterozygous mutants. Synthesis of wild-type and mutant R1 subunits was equivalent, but wild-type subunits were degraded preferentially. Hydroxylapatite chromatography revealed a novel R1 subunit-containing species from heterozygous mutant preparations whose elution behavior suggested a trimeric kinase consisting of an R1 subunit dimer and one catalytic (C) subunit. Wild-type R1 subunit was found only in dimer and "trimer" peaks; the tetrameric kinase peak contained only mutant R1 subunit. It is concluded that C subunit binds preferentially to mutant R1 subunit in heterozygous cells forming either tetrameric kinase with mutant R1 subunit homodimers or trimeric kinase with R1 subunit heterodimers. This preferential binding results both in suppression of wild-type kinase activation and differential stabilization of mutant R1 subunits.  相似文献   

5.
R Kumar  K C Yuh  M Tao 《Enzyme》1978,23(2):73-83
Two adenosine 3',5'-cyclic monophosphate (cyclic-AMP)-binding protein factors (molecular weight 230,000) have been partially purified from human erythrocytes. One of these proteins seems to be different from the cyclic-AMP-binding component of the cyclic-AMP-dependent protein kinases. These protein factors are also capable of binding adenosine. We present data also on two forms of cyclic-AMP-dependent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) partially purified from the cytosol of normal human erythrocytes. Kinase I has been classified as type I enzyme on the basis of its activation when preincubated with protamine, histone or NaCl. The substrate specificities of the two kinases and many of their kinetic parameters are rather similar. Their subunit structure is reminiscent of that of kinases obtained from other sources. The catalytic subunit of both enzymes reversibly cross-react with the regulatory subunit of kinase I from the rabbit red blood cell.  相似文献   

6.
An unusual cAMP binding protein of 50 000 Da previously found in human tumors was isolated from HeLa cells in the presence of protease inhibitors. The protein was neutralized by anti-bovine RII antibodies but not by anti-RI. It was able to form a dimer, and to inhibit HeLa C kinase in a dose-dependent manner. The HeLa RII 50 000 was also subject to limited proteolysis and it could be phosphorylated by C kinase. HeLa cells contain two RI proteins, a predominant 49 000 Da and a minor 51 000 Da isoprotein. In addition, large amounts of a protein consisting of 19 000 and 20 000 Da subunits were isolated by 8-thio-CAMP affinity chromatography that was not immunologically related to the R proteins.  相似文献   

7.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

8.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

9.
During the purification of cyclic AMP binding proteins from rat liver, some smaller active fragments were obtained, possibly as the result of proteolysis. The binding proteins detected had approximate molecular weights of 50,000, 36,000, and 10,000. Each of these components bound cyclic [3H]AMP with high affinity (apparent dissociation constants ranging from 2 to 10 nM) and had a similar ability to inhibit the purified catalytic subunit of rat liver protein kinase. Cyclic AMP prevented this inhibition in each instance. These results suggest that the binding site for cyclic AMP and the site for interacting with catalytic subunit occur relatively close to one another on the regulatory subunit and can remain functional when a substantial fraction of the subunit is lost.  相似文献   

10.
The cAMP receptor site in the regulatory subunit of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase type I was mapped using analogues of cAMP in which the ribose phosphate moiety was systematically modified. Electronical alteration of the cyclophosphate ring at the 3' and 5' positions by sulfur and nitrogen decreased the affinity of these analogues towards the kinase. Substituents at these positions are not tolerated. Testing the separated diastereomers of derivatives in which one of the exocyclic oxygens at the phosphorus has been substituted by sulfur, it was found that one diastereoisomer is preferentially recognized. Based on these results it is proposed that the hydrophylic cyclic phosphate-ribose moiety of cAMP is bound to the kinase via its 3' and 5'-oxygens, the 2'-hydroxy group and the negative charge in a fixed position. Based on our and other published results it is further proposed, that the adenine moiety is bound in a hydrophobic cleft without any hydrogen bond interactions. The chemical interactions between cAMP and the R subunit of protein kinase type I differ from those found for the binding of cAMP to the chemoreceptor of Dictyostelium discoideum [18].  相似文献   

11.
The regulatory subunit of cyclic AMP-dependent protein kinase I was purified to homogeneity from porcine skeletal muscle by two different procedures, one relying on affinity chromatography with cyclic AMP-Sepharose and the other relying exclusively on ion-exchange and molecular seive chromatography. Both procedures were adapted so that catalytic subunit also could be purified from the same enzyme preparation. In its native form the regulatory subunit was a dimer having a molecular weight of 92,500. Polyacrylamide gels run under denaturing conditions indicated that the dimer was composed of two identical subunits having a molecular weight 45,500. In addition to the dimeric regulatory subunit, a second, smaller cyclic AMP-binding protein frequently was observed. This protein having a molecular weight of 34,500 also was purified to homogeneity and appeared to be a proteolytic fragment derived from the regulatory subunit. Limited proteolysis with trypsin converted the regulatory subunit into a protein having a molecular weight of 34,500 and a polypeptide fragment having a molecular weight of approximately 11,000. Although the 34,500 molecular weight protein retained its capacity to bind cyclic AMP, it was monomeric apparently having lost its ability to aggregate to a dimer.  相似文献   

12.
Cyclic-AMP-binding proteins in membrane and soluble fractions from rat forebrain were compared; membrane fractions included smooth and rough microsomes and a plasma membrane fraction enriched in synaptic membranes. Protein fractions were treated with 8-azido-[32P]cyclic AMP and ultraviolet irradiation to covalently tag cyclic-AMP-binding proteins. Labeled proteins were then analyzed by two-dimensional gel electrophoresis (2DGE) and fluorography. The soluble CNS proteins contained two major cyclic-AMP-binding species at 48K (48K 5.5 and 48K 5.45), differing slightly in their isoelectric points. Another protein was seen at 54K (54K 5.3) adjacent to the beta-tubulin subunits in the 2D electrophoretogram. The analysis of the smooth microsome and plasma membrane fractions differed from the soluble fraction in that there were two cyclic-AMP-binding proteins adjacent to the beta-tubulin region (54K 5.3 and 52K 5.3) differing slightly in apparent molecular weight. The membrane fractions also contained a cyclic-AMP-binding protein at 54K 5.8. The 52K 5.3 and 54K 5.8 species were unique to the membrane fractions. The rough microsomes did not contain detectable amounts of cyclic-AMP-binding proteins. Free polysomes were isolated from brain tissue, and translation products were analyzed by cyclic AMP affinity chromatography and immunopurification with antibodies to the brain specific type II regulatory subunit. The translation products that were found to bind cyclic AMP Sepharose are as follows: 48K 5.5, 48K 5.45, 52K 5.3, and 54K 5.8. These species comigrated with proteins that were photoaffinity-labeled in cytosol and membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

14.
E M Reimann 《Biochemistry》1986,25(1):119-125
The type II adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase from bovine heart, consisting of a dimeric regulatory subunit and two catalytic subunits, was converted to a heterodimer by limited tryptic digestion. Loss of the tetrameric structure was accompanied by proteolysis of the regulatory subunit to a form with an apparent molecular weight of 45 000 vs. 52 000 for the native subunit. The proteolyzed subunit behaved as a monomer, in contrast to the dimeric native subunit. Amino acid sequence analysis established that proteolysis removed 45 residues at the N-terminus, indicating that these 45 residues constitute the dimerizing domain of this protein. The kinetic properties of this heterodimer were indistinguishable from those of the native tetramer: half-maximal kinase activation occurred at 48 nM cAMP with a Hill coefficient of 1.45, the regulatory subunit bound 1.5 equiv of cAMP with half-maximal binding occurring at 33 nM, and kinetics for dissociation of bound cAMP were biphasic, indicating the presence of two different binding sites. These observations suggest that residues 1-45 function only in the formation of dimers and that dimerization has little influence on other functional properties of the regulatory subunit. More extensive proteolysis cleaved the monomeric fragment at Lys-311. The fragments resulting from this second cleavage did not dissociate, and the complex inhibited the catalytic subunit in a cAMP-dependent manner.  相似文献   

15.
We have isolated and characterized the micronuclear gene encoding the regulatory subunit of cAMP-dependent protein kinase of the ciliated protozoan Euplotes octocarinatus, as well as its macronuclear version and the corresponding cDNA. Analyses of the sequences revealed that the micronuclear gene contains one small 69-bp internal eliminated sequence (IES) that is removed during macronuclear development. The IES is located in the 5'-noncoding region of the micronuclear gene and is flanked by a pair of tetranucleotide 5'-TACA-3' direct repeats. The macronuclear DNA molecule carrying this gene is approximately 1400 bp long and is amplified to about 2000 copies per macronucleus. Sequence analysis suggests that the expression of this gene requires a +1 ribosomal frameshift. The deduced protein shares 31% identity with the cAMP-dependent protein kinase type I regulatory subunit of Homo sapiens, and 53% identity with the regulatory subunit R44 of one of the two cAMP-dependent protein kinases of Paramecium. In addition, it contains two highly conserved cAMP binding sites in the C-terminal domain. The putative autophosphorylation site ARTSV of the regulatory subunit of E. octocarinatus is similar to that of the regulatory subunit R44 of Paramecium but distinct from the consensus motif RRXSZ of other eukaryotic regulatory subunits of cAMP-dependent protein kinases.  相似文献   

16.
A cAMP-dependent protein kinase from mycelia of Saccobolus platensis was characterized. The holoenzyme seems to be a dimer (i.e., regulatory subunit--catalytic subunit) of 78,000 Da, slightly activated by cAMP but susceptible to dissociation into its subunits by cAMP, or by kemptide and protamine, the best substrates for Saccobolus protein kinase. The regulatory subunit was purified to homogeneity by affinity chromatography. It is highly specific for cAMP and has two types of binding sites but failed to inhibit the phosphotransferase activity of the homologous or the heterologous (bovine heart) catalytic components. The activity of the catalytic subunit was completely abolished by the regulatory component of the bovine heart protein kinase as well as by a synthetic peptide corresponding to the active site of the mammalian protein kinase inhibitor. The data suggest that interaction between the subunits of the S. platensis protein kinase is different than that found in cAMP-dependent protein kinases from other sources. Similarities and differences between the Saccobolus protein kinase and enzymes from low eucaryotes and mammalian tissues are discussed.  相似文献   

17.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

18.
Binding activity obtained from an established line of hepatoma tissue culture (HTC) cells has a lower apparent affinity for cyclic AMP at physiological pH than has the analogous binding activity from rat liver. However, the apparent binding affinity of HTC preparations can be reversibly increased by adding NaCl or guanidine · HCl. In the presence of such activating substances, a macromolecular inhibitory activity has been chromatographically separated from the cyclic AMP-binding activity. Removal of this inhibitory component causes the apparent affinity of the cyclic AMP-binding activity from HTC cells to increase and resemble that observed with liver preparations. Before treatment with salt, the inhibitory activity seems to be physically associated with the binding activity. Adding the isolated inhibitory component back to a suitably activated binding preparation from HTC cells results in a decrease in the apparent affinity for cyclic AMP. The isolated inhibitory component is devoid of cyclic AMP-binding and cyclic AMP phosphodiesterase activities and has an apparent minimal molecular weight of about 30,000 by gel filtration. It possesses protein kinase activity and seems to be identical to the catalytic subunit of a cyclic AMP-stimulated protein kinase on the basis of chromatographic properties and sensitivities to heat and low pH. This catalytic subunit represents only a minor portion of total cellular protein kinase activity and is also present in liver extracts. However, the binding activity from liver is not inhibited significantly under conditions where the binding from HTC cells is affected by the catalytic subunit. The difference in this inhibitory response between liver and HTC preparations appears to reflect differences in the cyclic AMP-binding proteins themselves.  相似文献   

19.
Protein kinase regulatory subunits type I (rabbit skeletal muscle) and type II (bovine heart) were isolated by a rapid two step procedure which involved affinity chromatography on an 8-thio cAMP matrix. The R proteins were analyzed for cAMP binding capacity using three different methods for the separation of bound from free cAMP, and various methods for protein determination. Regulatory subunits type I as well as type II were both found to contain two high affinity cAMP binding sites per R monomer corresponding to a formula for the native R proteins of R2·cAMP4. - Kinetic analyses of limited proteolysis by various proteases revealed striking differences between R I and R II with respect to loss of cAMP binding capacity, ability to inhibit the catalytic subunit C, and susceptibility to further degradation. Some of the products had lost about one half of the cAMP binding capacity supporting the presence of two binding sites in R while other degradation products showed no change in high affinity binding sites. By contrast, the ability to inhibit the catalytic subunit C was lost in all products of limited proteolysis except one.  相似文献   

20.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号