首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether diets enriched in monounsaturated or n-3 fatty acids cause a reduction in cholesterol absorption relative to those more enriched in saturated fatty acids, we measured cholesterol absorption in 18 African green monkeys fed diets enriched in lard, oleinate (oleic acid-rich safflower oil), or fish oil at two levels of dietary cholesterol (0.05 vs. 0.77 mg/kcal). All animals were initially challenged with the lard, high cholesterol diet to ascertain their responsiveness to dietary cholesterol. Based on the results of this challenge, low versus high responders were equally distributed in assignation to the low (n = 6) and high (n = 12) cholesterol regimens. Within each level of dietary cholesterol animals consumed all three dietary fats in random sequences during three experimental phases each lasting 9-12 months with a monkey chow washout period between each phase, so that each animal served as its own control. During each dietary phase measurements of plasma lipids and cholesterol absorption were performed. The animals fed the higher versus lower level of dietary cholesterol had significantly higher plasma total cholesterol and low density lipoprotein (LDL) cholesterol concentrations and lower percentage cholesterol absorption; high density lipoprotein (HDL) cholesterol levels were not affected by the level of dietary cholesterol. Dietary fish oil resulted in a 20-30% reduction (P less than 0.01) in total plasma and LDL cholesterol and a 30-40% reduction (P less than 0.01) in HDL cholesterol concentrations compared to lard and oleinate regardless of the level of dietary cholesterol. At the high level of cholesterol intake, the oleinate and fish oil diets resulted in significantly lower percentage cholesterol absorption compared to the lard fat diet (35 +/- 2%, 34 +/- 3%, 41 +/- 4%, respectively). At the lower level of dietary cholesterol, percentage cholesterol absorption values were higher than those at the high cholesterol intake (45-52% vs. 34-41%) but were not affected by the type of dietary fat. There was a significant positive correlation between plasma LDL cholesterol concentrations and percentage cholesterol absorption for the oleinate and lard diets at the high level of dietary cholesterol and a significant inverse association between plasma HDL cholesterol and percentage cholesterol absorption. We conclude that the type of dietary fat can influence cholesterol absorption in African green monkeys and that oleinate and fish oil reduce cholesterol absorption relative to lard when a high amount of cholesterol (0.77 mg/kcal) is present in the diet.  相似文献   

2.
Omega 3 polyunsaturated fatty acids are promoted as beneficial in the prevention of metabolic and cardiovascular diseases. In general, dietary omega 3 fatty acids are derived from plant sources as linolenic acid (LNA, C18:3 omega3) the precursor to eicosapentaenoic acid (EPA, C20:5 omega3) and docosahexaenoic acid (DHA, C22:6 omega3). However, it remains unclear if the polyunsaturated fatty acid (PUFA) LNA can provide the same health benefits as the very long chain highly unsaturated fatty acids (HUFA) EPA and DHA generally derived from oily fish. In this study, mice were fed synthetic diets containing lard (low in PUFA and HUFA), canola oil (to supply PUFA), or a mixture of menhaden and arasco (fish and fungal) oils (to supply HUFA) for 8 weeks. The diets were neither high in calories nor fat, which was supplied at 6%. The lard and canola oil diets resulted in high levels of hepatic triglycerides and cholesterol and elevation of lipogenic gene expression. By comparison livers from mice fed the fish/fungal oil diet had low levels of lipid accumulation and more closely resembled livers from mice fed standard laboratory chow. SREBP1c and PPARgamma gene and protein expression were high in livers of animals fed diets containing lard or canola oil compared with fish/fungal oil. Hepatic fatty acid analyses indicated that dietary PUFA were efficiently converted to HUFA regardless of source. Therefore, differences in hepatic lipid levels and gene expression between dietary groups were due to exogenous fatty acid supplied rather than endogenous pools. These results have important implications for understanding the regulation of hepatic lipogenesis by dietary fatty acids.  相似文献   

3.
4.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

5.
The purpose of this study was to determine the effects of dietary fat, vitamin E, and iron on oxidative damage and antioxidant status in kidneys of mice. Sixty 1-month-old male Swiss-Webster mice were fed a basal vitamin E-deficient diet that contained either 8% fish oil + 2% corn oil or 10% lard with or without 1 g all-rac-alpha-tocopherol acetate or 0.74 g ferric citrate per kilogram of diet for 4 weeks. Significantly (P < 0.05) higher levels of lipid peroxidation products, thiobarbituric acid reactants (TBAR), and conjugated dienes were found in the kidneys of mice fed with fish oil compared with mice fed lard irrespective of vitamin E status. Mice maintained on a vitamin E-deficient diet had significantly higher renal levels of TBAR, but not conjugated dienes, than the supplemented group. Fish oil fed mice receiving vitamin E supplementation had lower levels of alpha-tocopherol than did mice in the lard fed group. Significantly higher levels of ascorbic acid were also found in the kidneys of mice fed with fish oil than were found in mice fed lard. The levels of protein carbonyls and glutathione (GSH), and activities of catalase, superoxide dismutase, selenium (Se)-GSH peroxidase, and non-Se-GSH peroxidase were not significantly altered by dietary fat or vitamin E. Dietary iron had no significant effect on any of the oxidative stress and antioxidant indices measured. The results obtained provide experimental evidence for the pro-oxidant effect of high fish oil intake in mouse kidney and suggest that dietary lipids play a key role in determining cellular susceptibility to oxidative stress.  相似文献   

6.
Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.  相似文献   

7.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

8.
Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.  相似文献   

9.
Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.  相似文献   

10.
To determine the effect of isocaloric substitution of dietary fish oil for lard on the physical and chemical properties of plasma low density lipoproteins (LDL), ten adult male cynomolgus monkeys were fed diets containing 11% (by weight) fish oil or lard in a crossover study consisting of two 15-week periods with a 6-week washout period in between. The atherogenic diets contained 40% of calories as fat with 0.26 mg cholesterol/kcal. Periodic measurements of plasma lipids were made throughout the study and a large blood sample was taken near the end of each 15-week period for LDL isolation and characterization, and for quantification of plasma apolipoproteins. Values for both studies were combined (mean +/- SE; n = 10) by diet. Significantly lower high density lipoprotein (HDL) cholesterol (28 +/- 2 vs. 57 +/- 8 mg/dl), apoA-I (53 +/- 11 vs. 88 +/- 7 mg/dl), and apoE (4.2 +/- 0.9 vs. 8.2 +/- 1.5 mg/dl) concentrations were found when the animals were consuming the fish oil versus the lard diet, respectively, but total plasma cholesterol (408 +/- 35 vs. 416 +/- 14 mg/dl), LDL cholesterol (356 +/- 34 vs. 331 +/- 17 mg/dl), and apoB (227 +/- 35 vs. 205 +/- 23 mg/dl) levels were not affected. LDL size was smaller during fish oil feeding (4.2 +/- 0.1 vs. 4.9 +/- 0.1 g/mumol) and LDL particle concentration was greater (2.3 +/- 0.2 vs. 1.8 +/- 0.1 microM). During fish oil feeding LDL cholesteryl esters (CE) and phospholipids (PL) were enriched in n-3 fatty acids and were relatively poor in 18:1 and 18:2 LDL CE transition temperature was about 11 degrees C lower during fish oil feeding (32 +/- 1 vs. 44 +/- 0.5 degrees C) and was positively correlated with the number of saturated, monoun-saturated, and n-6 polyunsaturated CE molecules per LDL. The results suggested that the range of transition temperatures among individual animal LDL was primarily determined by the number of monounsaturated CE, and the accumulation of n-3 polyunsaturated CE in LDL during fish oil feeding uniformly lowered the transition temperature of the LDL particle. There was a significant decrease in the percentage of LDL phosphatidylcholine (59 +/- 1 vs. 72 +/- 1%) and an increase in lysophosphatidylcholine (13 +/- 1 vs. 5 +/- 1%) and sphingomyelin (22 +/- 1 vs. 17 +/- 1%) during fish oil feeding relative to that of lard.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
This study was designed to investigate the effect of dietary adlay oil on plasma lipids, insulin and lipid peroxidation levels in rats. Twenty-four male Wistar rats fed diet containing adlay oil and cholesterol were studied for 4 weeks. The animals were divided into three groups: (1) 10% lard (control) group; (2) 5% lard + 5% adlay oil (5% adlay oil) group; and (3) 10% adlay oil group. Although there was no significant difference in body weight at the end of the feeding study, rats fed a diet containing adlay oil showed a significant decrease in adipose tissue weight and relative adipose weight. In addition, the rats fed the adlay oil showed significantly decreased low-density lipoprotein cholesterol (LDL-C), insulin, leptin and thiobarbituric acid reactive substance (TBARS) concentrations after 4 weeks of the feeding study. Although a significant decrease in total plasma cholesterol was observed in rats fed the 5% adlay oil diet, no significant difference was observed between the 10% adlay oil and control groups, and neither was a significant difference in liver TBARS concentration found between the dietary groups. Results from this study suggest that dietary adlay oil can reduce leptin, adipose tissue and LDL-C levels in rats.  相似文献   

12.
Both fish and flaxseed oils are major sources of different n-3 fatty acids. Beneficial effects of fish oil on posttransplantation complications have been reported. The current study aimed to compare the effects of flaxseed and fish oils in a rat cardiac allograft model. Male Fischer and Lewis rats were used as donors and recipients, respectively, to generate a heterotopic cardiac allograft model. Animals were randomly assigned into three groups and fed a diet supplemented with 1) 5% (wt/wt) safflower oil (control, n = 7), 2) 5% (wt/wt) flaxseed oil (n = 8), or 3) 2% (wt/wt) fish oil (n = 7), and an intraperitoneal injection of cyclosporine A (CsA; 1.5 mg.kg(-1).day(-1)) over 12 wk. Body weight, blood pressure, plasma levels of lipids, CsA, select cytokines, as well as graft function and chronic rejection features were assessed. Body weight and blood CsA levels were similar among the groups. Relative to controls, both treated groups had lower systolic and diastolic blood pressure and plasma levels of macrophage chemotactic protein-1. Treatment with fish oil significantly (P < 0.05) lowered plasma levels of triglycerides, total cholesterol, and LDL-cholesterol. HDL-cholesterol concentrations were significantly higher (P < 0.05) in the flaxseed oil-treated group compared with the other two groups. Both flaxseed oil and fish oil may provide similar biochemical, hemodynamic, and inflammatory benefits after heart transplantation; however, neither of the oils was able to statistically significantly impact chronic rejection or histological evidence of apparent cyclosporine-induced nephrotoxicity in this model.  相似文献   

13.
We tested the hypothesis that diets containing fish oils prevent the effects of a high cholesterol diet on the morphology and nutrient uptake of the intestine. Isocaloric semisynthetic diets were supplemented with beef tallow or fish oil containing low or high amounts of cholesterol and were fed to growing female Wistar rats for 14 days, after which the in vitro jejunal and ileal uptake of glucose, galactose, long-chain fatty acids, and cholesterol was determined. Feeding cholesterol with beef tallow was associated with a 12% decrease in the jejunal mucosal surface area. Feeding fish oil decreased jejunal mucosal surface area by 24%, as compared with the beef tallow diet, but the reduction was increased to 42% when fish oil and cholesterol were fed together. Ileal surface area was unaffected by varying the major source of dietary lipid, or by adding cholesterol. Despite the effect of fish oil on the mucosal surface area, the jejunal and ileal uptake of saturated as well as unsaturated long-chain fatty acids and cholesterol was similar in the four diet groups. Cholesterol supplementation enhanced the jejunal uptake of high concentrations of galactose only when fed with beef tallow, i.e., feeding fish oil prevented the enhancing effect of cholesterol on galactose uptake observed when beef tallow was fed. Thus, (i) a fish oil diet prevents the enhancing effect of cholesterol on jejunal active transport of galactose, an effect not explained by the reduction in jejunal mucosal surface area observed with the fish oil diet; (ii) these dietary manipulations result in a clear dissociation of the morphological from the transport adaptation of the intestine; and (iii) substitution of fish oil for beef tallow as the major source of lipid in the diet prevents the influence of cholesterol on the active intestinal transport of galactose.  相似文献   

14.
15.
Nine normal women, 22 to 37 years old, consumed controlled quantities of natural foods to test their responses to dietary cholesterol and saturated fat. All diets contained, as percentage of calories, 14% protein, 31% fat, and 55% carbohydrate. The main sources of polyunsaturated and saturated fats were corn oil and lard, respectively, and egg yolk was used for cholesterol supplementation. All subjects participated in four diet protocols of 15 days duration, and each diet period was separated by 3 weeks without diet control. The first diet (corn) was based on corn oil, had a polyunsaturated to saturated fat ratio (P/S) of 2.14, and contained 130 mg of cholesterol. The second diet (corn+) was identical to the first but contained a total of 875 mg of cholesterol. The third diet (lard) was based on lard, had a P/S ratio of 0.64, and contained 130 mg of cholesterol. The fourth diet (lard+) was identical to the third, but contained 875 mg of cholesterol per day. Changes of the plasma lipid, lipoprotein and apoprotein parameters relative to the corn diet were as follows: the corn+ diet significantly increased total plasma cholesterol, HDL-cholesterol, LDL-cholesterol, and apoB levels; the lard diet significantly increased total cholesterol, HDL-cholesterol, and apoB; and the lard+ diet significantly increased the total cholesterol, HDL-cholesterol, LDL-cholesterol, and apoA-I and apoB levels. There were no significant variations in VLDL-cholesterol, triglyceride, or apoE levels with these diets. The diets affected both the number of lipoprotein particles as well as the composition of LDL and HDL. Compared to the corn diet, cholesterol and saturated fat each increased the number of LDL particles by 17% and 9%, respectively, and the cholesterol per particle by 9%. The combination of saturated fat and cholesterol increased particle number by 18% and particle size by 24%. Switching from lard+ to lard, corn+, or corn diets reduced LDL-cholesterol of the group by 18%, 11%, and 28%, respectively, while a large inter-individual variability was noted. In summary, dietary fat and cholesterol affect lipid and lipoprotein levels as well as the particle number and chemical composition of both LDL and HDL. There is, however, considerable inter-individual heterogeneity in response to diet.  相似文献   

16.
The effect of dietary polyunsaturated fatty acids and α-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n–3) and docosahexaenoic acid (DHA, 22:6, n–3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7–3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of α-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of α-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

17.
Two groups of African green monkeys were fed diets containing 40% of calories as fat with half of the fat calories as either fish oil or lard. The fish oil-fed animals had lower cholesterol concentrations in blood plasma (33%) and low density lipoproteins (LDL) (34%) than did animals fed lard. Size and cholesteryl ester (CE) content of LDL, strong predictors of coronary artery atherosclerosis in monkeys, were significantly less for the fish oil-fed animals although the apoB and LDL particle concentrations in plasma were similar for both diet groups. We hypothesized that decreased hepatic CE secretion led to the smaller size and reduced CE content of LDL in the fish oil-fed animals. Hepatic CE secretion was studied using recirculating perfusion of monkey livers that were infused during perfusion with fatty acids (85% 18:1 and 15% n-3) at a rate of 0.1 mumol/min per g liver. The rate of cholesterol secretion was less (P = 0.055) for the livers of fish oil versus lard-fed animals (3.3 +/- 0.5 vs. 6.0 +/- 1.2 mg/h per 100 g, mean +/- SEM) but the rate of apoB secretion was similar for both groups (0.92 +/- 0.15 vs. 1.01 +/- 0.13 mg/h per 100 g, respectively). The hepatic triglyceride secretion rate was also less (P less than 0.05) for the fish oil-fed animals (8.3 +/- 2.5 vs. 18.3 +/- 4.4 mg/h per 100 g). Liver CE content was lower (P less than 0.006) in fish oil-fed animals (4.1 +/- 0.8 vs. 7.4 +/- 0.7 mg/g) and this was reflected in a lower (P less than 0.04) esterified to total cholesterol ratio of perfusate VLDL (0.21 +/- 0.045 vs. 0.41 +/- 0.06). The hepatic VLDL of animals fed fish oil had 40-50% lower ratios of triglyceride to protein and total cholesterol to protein. From these data we conclude that livers from monkeys fed fish oil secreted similar numbers of VLDL particles as those of lard-fed animals although the hepatic VLDL of fish oil-fed animals were smaller in size and relatively enriched in surface material and depleted of core constituents. Positive correlations between plasma LDL size and both hepatic CE content (r = 0.87) and hepatic VLDL cholesterol secretion rate (r = 0.84) were also found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Livers from male rats fed a standard commercial diet supplemented with 8% (w/w) marine fish or safflower oils were perfused for 70 min with undiluted blood in the presence and absence of insulin. Lipogenesis, as measured by the incorporation of 3H2O into liver and perfusate fatty acids, was inhibited by the feeding of fish oil. Net triacylglycerol secretion was also depressed by this dietary treatment. Infusion of insulin stimulated triacylglycerol secretion and the incorporation of newly synthesised fatty acids into liver and perfusate lipids with dietary safflower oil but not with fish oil. Hepatic cholesterol synthesis was also depressed by feeding fish oil. Net ketogenesis was raised by feeding fish oil and was depressed by insulin with both safflower and fish oil. Blood glucose was raised in the fish oil group but with both dietary oils the hormone exerted a significant hypoglycaemic effect. The data are discussed with respect to the observations that in vivo dietary fish oil (but not safflower oil) opposes the hypertriglyceridaemia arising from the hepatic overproduction of very-low-density lipoproteins.  相似文献   

19.
Previous studies using cynomolgus monkeys have shown that isocaloric substitution of dietary fish oil for lard reduced the in vitro binding of plasma low density lipoproteins (LDL) to arterial proteoglycans (PG) (Edwards, I.J., A.K. Gebre, W. D. Wagner, and J. S. Parks. 1991. Arterioscler. Thromb., 11: 1778-1785). The purpose of the present study was to determine whether all LDL subfractions were equally affected by the type of dietary fat with regard to PG binding and to identify compositional changes in LDL subfractions that might relate to the differential in PG binding. Two groups of cynomolgus monkeys (n = 5 each) were fed atherogenic diets (40% calories as fat; 0.26 mg cholesterol/kcal) containing 20% of calories as egg yolk and 20% as either lard or menhaden fish oil. LDL were isolated from plasma by ultracentrifugation and size exclusion chromatography and subfractionated by density gradient centrifugation. Three density ranges of LDL subfractions were collected from the gradients for determination of chemical composition, apoE and apoB content by ELISA, and binding to arterial PG in vitro. The d 1.015-1.025 g/ml subfraction contained 39 +/- 8% of the LDL cholesterol in the lard group but only 7 +/- 3% for the fish oil group. Values for cholesterol distribution were opposite for the d 1.035-1.045 g/ml subfraction, 8 +/- 1% versus 41 +/- 8%, respectively. Similar trends were noted for the distribution of apoB. For the lard group, LDL binding to arterial PG increased with decreasing density (i.e., increasing size) of the subfractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Feeding a diet containing 20% of sesame oil (SO) or coconut oil (CNO) along with 2% cholesterol to rats for two months showed differences in their serum and tissue lipid profile and certain enzyme activities. Hyperlipidemia and related oxidative effects were more pronounced in coconut oil fed rats than those fed sesame oil. Feeding a combination of the oils (10% CNO +10% SO) lowered significantly the hyperlipidemia and certain other deleterious effects of CNO. Feeding a polar fraction of garlic oil (PFGO) prepared in the same way as for ajoene and administered at a dosage of 100 mg/kg along with each of the above oil containing diets counteracted significantly the hyperlipidemic, oxidant and also most of the other deleterious effects of the oils like raised lipid levels in serum and tissues, raised serum levels of AST and tissue levels of HMGCoA reductase and the lowered serum and tissue levels of glutathione reductase. The results support the claims that ajoene, the major polar compound of garlic oil, has very good biological action, which warrants further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号