首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activities of the cytosolic and plastid isozymes of 6-phosphogluconate dehydrogenase from developing endosperm of Ricinus communis L. seeds were inhibited in vitro by hexosebisphosphates. Inhibition constants for glucose 1,6-bisphosphate were 221 and 209 micromolar for the cytosolic and plastid isozymes, respectively, and corresponding values for fructose 2,6-bisphosphate were 10.5 and 8.6 micromolar. In each case inhibition was of a mixed noncompetitive nature relative to 6-phosphogluconate. While the levels and distribution of fructose 2,6-bisphosphate in castor oil seed endosperm cells are not yet known, the levels reported to occur in leaf cytosol would be high enough to significantly inhibit carbon flux through the pentosephosphate pathway due to inhibition of 6-phosphogluconate dehydrogenase activity.  相似文献   

2.
Leucoplasts isolated from developing endosperm of Ricinus communis L. will import the precursor of the small subunit of ribulose bisphosphate carboxylase from pea shoots and process it to its mature molecular weight (SA Boyle, SM Hemmingsen, DT Dennis [1986] Plant Physiol 81: 817-822). This process requires energy in the form of ATP. GTP, CTP, and UTP are inactive. ADP will also satisfy the energy requirement, probably through the action of adenylate kinase in the envelope. Fatty acid biosynthesis which occurs within these leucoplasts also requires ATP for maximal activity. Phosphoenolpyruvate will stimulate fatty acid biosynthesis approximately three times as effectively as ATP through the generation of ATP within the organelle by the action of the plastid pyruvate kinase. However, phosphoenolpyruvate under similar conditions will not stimulate the uptake of the small subunit of ribulose bisphosphate carboxylase into leucoplasts. These results indicate that ATP is required outside the leucoplast for protein uptake and that internally generated ATP is not effective in this process.  相似文献   

3.
Two isoenzymes each of hexose-P isomerase, aldolase and 6-P-gluconate dehydrogenase have been found in the endosperm of developing castor beans (Ricinus communis L.). One isoenzyme for each activity is present in the proplastid fraction. Only one form of glucose-6-P dehydrogenase was found. It is suggested that the partition of an enzyme activity between cytosol and plastid is regulated by the synthesis of isoenzymes which are subcellular site specific. In addition, this report describes the use of diethylaminoethyl-Sephadex A-25 sievorptive chromatography for the preparation of plant enzymes.  相似文献   

4.
The metabolism of sucrose to long chain fatty acids in the endosperm of developing castor bean (Ricinus communis L.) seeds requires a combination of cytosolic and proplastid enzymes. The total activity and the subcellular distribution of the intermediate enzymic steps responsible for the conversion of sucrose to pyruvate have been determined. Hexose phosphate synthesis from sucrose occurs in the cytosol along with the first oxidative step in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase. The proplastids contain the necessary complement of glycolytic enzymes to account for the in vivo rates of acetate synthesis from glucose 6-phosphate. These organelles also contain the majority of the cellular 6-phosphogluconate dehydrogenase, transketolase, and transaldolase activities.  相似文献   

5.
Plastids were isolated from the developing endosperm of Ricinuscommunis L. and purified by rate-zonal centrifugation on discontinuoussucrose gradients. Assay conditions were optimized for the uptakeand incorporation of 14C-acetate into lipids by intact plastids.Using the optimized conditions, the uptake and incorporationof several 14C-glycolytic intermediates into lipids were examined.Neither sucrose nor glucose-6-phosphate was incorporated intolipids. In order of increasing magnitude of incorporation, glucose,fructose, 3-phosphoglycerate, acetate, and pyruvate were metabolizedto chloroform-methanol (2: 1 v/v) soluble products. Pyridoxal-5'-phosphateinhibited the incorporation of 3-phosphoglycerate into lipidswhereas -cyano-4 hydroxycinnamate was without effect on pyruvateincorporation. Avidin and cerulenin did not inhibit the incorporationof acetate into lipids by intact plastids. Key words: Ricinus communis, Plastids, Lipid synthesis, Glycolytic intermediates  相似文献   

6.
Plastid and cytosolic isozymes of ATP:fructose 6-phosphate 1-phosphotransferase (PFKp and PFKc, respectively) have been isolated from leaves and developing endosperm tissues of the castor oil plant (Ricinus communis L). Endosperm PFKp has been purified to apparent homogeneity. Polyclonal antibodies raised against one of the four polypeptides associated with potato tuber PFK (molecular mass, 46 kilodaltons) immunoprecipitated developing endosperm and leaf PFKp, but not PFKc isozymes. Western blots, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and analytical gel filtration show that PFKp from developing endosperm is a 220 kilodalton homotetramer composed of 57 kilodalton subunits. Kinetic studies of leaf PFKp and PFKc isozymes reveal both similarities and differences to the characteristics of the respective endosperm isozymes studied previously (WJ Garland, DT Dennis [1980] Arch Biochem Biophys 204: 302-317). The immunological and kinetic data suggest that leaf and developing endosperm PFKp are different but structurally related proteins.  相似文献   

7.
Electron photomicrographs of endosperm tissue from germinating seed of Ricinus communis L. cv. Hale show proplastids which contain prominent starch grains. The content of starch in endosperm tissue increased from 500 micrograms per seed, in imbibed seed, to 1,100 micrograms per seed in 5-day-old seedlings. The maximum net rate of starch deposition was 1.1 nanomoles glucose incorporated per minute per seed. About 200 micrograms of starch remained in the endosperm 9 days after imbibition. Starch content followed the same developmental pattern as the content of sucrose, free reducing sugars, and other metabolic processes found in this tissue. Two key enzymes of starch synthesis, adenosine diphosphoglucose (ADPG) pyrophosphorylase and ADPG-starch glucosyl transferase (starch synthetase) exhibited maximum activities at 4 and 5 days after germination, respectively. The maximum activity of ADPG pyrophosphorylase was 8.17 nanomoles ADPG formed per minute per seed, whereas starch synthetase exhibited an activity of 125 nanomoles glucose incorporated per minute per seed. These levels of enzyme activity are sufficient to account for the starch synthesis observed. Other enzymes which may be involved in starch synthesis include 3-phosphoglycerate kinase which showed an activity of 8.76 units per seed, triose-P isomerase (2.56 units per seed), fructose-1,6-bisphosphate aldolase (0.99 units per seed), fructose-1,6-bisphosphatase (0.23 units per seed), phosphoglucose isomerase (12.6 units per seed), and phosphoglucomutase (9.72 units per seed). The activities of these enzymes were similar to previously reported values.

Starch synthetase was found in association with the fraction containing proplastids isolated from endosperm tissue. Of the total starch synthetase activity in the endosperm, 38% was particulate. Forty-four% of the total particulate activity of starch synthetase placed on sucrose gradients was associated with the band containing proplastids. The proplastids contained 98% of the ribulose 1,5-bisphosphate carboxylase carboxylase activity placed on the gradient.

  相似文献   

8.
The fat-storing endosperm of Ricinus communis L. was found tocontain an ascorbate peroxidase (EC 1.11.1.11 [EC] ), which is nearlyas active as catalase (EC 1.11.1.6 [EC] ) in degradation of hydrogenperoxide (H2O2) at its physiological concentrations. This ascorbateperoxidase probably functions together with monodehydroascorbatereductase (EC 1.6.5.4 [EC] ) or dehydroascorbate reductase (EC 1.8.5.1 [EC] )and glutathione reductase (EC 1.6.4.2 [EC] ) to remove the H2O2 producedduring the transformation of fat to carbohydrate in the glyoxysomes.The activities of these enzymes as well as the content of ascorbateand glutathione increase parallel to the activities of glyoxysomalmarker enzymes during the course of germination. Inhibitionof catalase by aminotriazole results in increases of the ascorbateperoxidase activity and of the glutathione content. All fourenzymes are predominantly localized in the cytosol of the Ricinusendosperm with low activities found in the plastids and themitochondria. The results suggest, that the ascorbate-dependentH2O2 scavenging pathway, which has been shown to be responsiblefor the reduction of photosynthetically derived H2O2 in thechloroplasts, operates also in the Ricinus endosperm. (Received June 5, 1990; Accepted July 31, 1990)  相似文献   

9.
the native enzyme was 104,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits with an identical molecular weight of 52,000. The optimum pH of the reaction was 8.0. The Km values for 6-phosphogluconate and NADP were 3.6×10?5m and 1.3 × 10?5m, respectively. The enzyme showed no Mg2𠀫 requirement for the activity, but was activated by Mn2𠀫 and Ca2𠀫. The enzyme was inhibited by sulfhydryl reagents, indicating that a sulfhydryl group may be involved in the active site of the enzyme. The enzyme was also inhibited by NADPH2, ATP, and the intermediates formed during photosynthesis. The substrate 6-phosphogluconate and cofactor NADP partially protected the enzyme from inactivation. The enzyme had enzymological and physicochemical properties similar to enzymes isolated from other sources.  相似文献   

10.
Phospholipase A2 (Naja naja), the nonpenetrating dye trinitrobenzene sulfonate, and the penetrating dye dinitrofluorobenzene, were used to determine the transmembrane distributions of phospholipids of mitochondria and glyoxysomes isolated from endosperm tissue of castor bean (Ricinus communis L. var. Hale). These studies indicated that the phospholipid distributions were distinctly asymmetric in the accessible (reacted with the probes without total membrane disruption by detergents) pools of the glyoxysomal and inner mitochondrial membranes, but more nearly symmetric in the outer mitochondrial membrane. However, significant quantities of the phospholipids of the mitochondrial membranes were inaccessible to the probes used. An increased accessibility of the phospholipids of all membranes following Triton X-100 dispersion was found, and protein to phospholipid ratios in organelle membranes were found to correlate inversely with the accessibility of the phospholipids to the probes. The inaccessible phospholipids may be involved in lipid-protein interactions.  相似文献   

11.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

12.
6-Phosphogluconate dehydrogenase (6PG) was purified from rat small intestine with 36% yield and a specific activity of 15 U/mg. On SDS/PAGE, one band with a mass of 52 kDa was found. On native PAGE three protein and two activity bands were observed. The pH optimum was 7.35. Using Arrhenius plots, Ea, ΔH, Q10 and Tm for 6PGD were found to be 7.52 kcal/mol, 6.90 kcal/mol, 1.49 and 49.4°C, respectively. The enzyme obeyed “Rapid Equilibrium Random Bi Bi” kinetic model with Km values of 595 ± 213 μM for 6PG and 53.03±1.99 μM for NADP. 1/Vm versus 1/6PG and 1/NADP plots gave a Vm value of 8.91±1.92 U/mg protein. NADPH is the competitive inhibitor with a Ki of 31.91±1.31 μM. The relatively small Ki for the 6PGD:NADPH complex indicates the importance of NADPH in the regulation of the pentose phosphate pathway through G6PD and 6PGD.  相似文献   

13.
A full-length cDNA encoding a calreticulin-like protein was isolated by immune-screening a germinating castor bean endosperm cDNA library with antisera raised to the total lumenal fraction of purified plant endoplasmic reticulum. The calcium-binding properties of the recombinant protein were characterized and shown to be essentially identical to those reported for the mammalian calreticulin. Calcium overlays and immune blot analysis confirmed the endoplasmic lumenal identity of this reticuloplasmin. Probing protein blots of endoplasmic reticulum subfractions with radio-iodinated calreticulin showed specific associations with various polypeptides including one identified as the abundant reticuloplasmin protein disulfide isomerase.Characterization of the corresponding genomic clones revealed that calreticulin is encoded by a single gene of 3 kb in castor. The full genomic sequence reveals the presence of 12 introns, 12 translated exons, and one exon containing the last three amino acids of the translated sequence and the 3-untranslated region of the gene. Northern blot analysis of RNA isolated from various organ tissues showed a basal constitutive level of expression throughout the plant, but more abundant mRNA being detected in tissues active in secretion. This was confirmed by analysis of transgenic tobacco plants containing 1.8 kb of 5-untranslated genomic sequence fused to the -glucuronidase reporter gene (GUS) showed a more localized pattern of expression. Activity being localized to the vasculature (phloem, root hairs and root tip) in vegetative tissue, and being strongly expressed in the floral organs including the developing and germinating seed.  相似文献   

14.
Phospholipase D (PLD; EC 3.1.4.4) has been proposed to play a pivotal role in various cellular processes, but molecular understanding of this enzyme is rather limited. This report describes the nucleotide sequence, structure, and genomic organization of a PLD gene from castor bean (Ricinus communis L. cv. Hale). The PLD gene was isolated from a castor bean genomic library using the PLD cDNA as a hybridization probe. Sequence comparison with the PLD cDNA revealed that the PLD gene consisted of four exons and three introns, one of which interrupts the 5-untranslated region. Southern blot analysis indicated that the cloned PLD gene was present as a single-copy gene, and yet there were other PLD or PLD-related sequences in the castor bean genome.  相似文献   

15.
Glycollate metabolism in 5-day-old endosperm tissues of Ricinuscommunis L. was examined by feeding micromolar quantities of[2-14C]glycollate to tissue slices. It was found that glycollatecarbon was rapidly incorporated into glyoxylate, glycine, serine,and carbon dioxide. Only small amounts of 14C were incorporatedinto the sugars. Changes in the distribution of 14C with timesuggested that glyoxylate was a primary product and that glycineand serine were secondary products of glycollate metabolism.The results of feeding experiments are interpreted as indicatingthat a glycollate pathway leading to sugar biosynthesis is ofminor importance compared to the rapid utilization of glycollatefor the biosynthesis of glycine and serine. Enzymes necessaryto catalyse the incorporation of glycollate into glycine andserine have been examined in castor-bean endosperm extracts.These included: glycollic acid oxidase, gloxylic acid reductase,glyoxylate transaminase, N10 formyltetrahydrofolate synthetase,N5,N10-methylenetetrahydrofolate dehydrogenase, and serine hydroxymethyltransferase.  相似文献   

16.
The ratio of activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (G6P DH/6PG DH), and the contents of glucose-6-phosphate (G6P), 6-phosphogluconate (6PG) and fructose-6-phosphate (F6P) were studied at various stages of potato virus Y (PVY) multiplication in Nicotiana tabacum cv. Samsun. G6P DH/6PG DH increased through the experiment from 0.42 to 0.53 in leaves of healthy tobacco, and up to 0.59 in PVY systemically infected leaves. However, these ratios in the ruptured protoplast preparations, and the chloroplast and cytosol fractions of healthy protoplasts were similar to that from infected ones. The ratio lower than 1, found in the healthy and/or PVY- infected leaf tissues and in the infected protoplasts as well, confirms the assumption that G6P DH is the control enzyme of oxidative pentosephosphate pathway not only in the healthy but also in the infected plants. The contents of G6P, 6PG and F6P in the period of the highest PVY multiplication were strongly decreased (to 30 – 50 % when compared with control healthy leaves) and were negatively correlated with the G6P DH and 6PG DH activities.  相似文献   

17.
Glucose-6-phosphate (G6P) dehydrogenase and 6-phosphogluconate (6PG) dehydrogenase were partially purified about 53-fold and 47-fold, respectively, from the cell-free extract of glucose-grown Candida tropicalis by means of ammonium sulfate fractionation and DEAE-cellulose column chromatography. AMP acted as the competitive inhibitor against G6P and NADP in the G6P dehydrogenase reaction. This inhibition was remarkable at low concentrations of NADP, increasing the sigmoidicity of the NADP-saturation curve. On the other hand, 6PG dehydrogenase was not affected by AMP. Fructose-1,6-bisphosphate (FDP) and phosphoenolpyruvate (PEP) inhibited slightly G6P dehydrogenase. 6PG dehydrogenase was also weakly inhibited by FDP. Apparent Km values of G6P dehydrogenase were calculated as 1.8 × 10?4 m for G6P and 3.1 × 10?5 m for NADP. Those of 6PG dehydrogenase were 9.4 × 10?5 m for 6PG and 2.8 × 10?5 m for NADP.  相似文献   

18.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

19.
Sugar unloading in roots of Ricinus communis L.   总被引:1,自引:1,他引:0  
  相似文献   

20.
The cut hypocotyl of Ricinus communis L. seedlings exudes phloem sap which contains a characteristic set of proteins (Sakuth et al. 1993, Planta 191, 207–213). These sieve-tube exudate proteins were probed with antibodies to highly conserved proteins, namely ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), Rubisco subunit-binding protein, heat-shock protein (HSP 70), chaperonin GroEL and ubiquitin. Homologous proteins in the sieve-tube exudate were identified with antisera to HSP 70, Rubisco-subunit-binding protein and ubiquitin. Ribulose-1,5-bisphosphate carboxylase-oxygenase, which was present in the tissue, was not detected. Of all the cross-reactive proteins detected, ubiquitin was special because the ubiquitin-to-protein ratio in the sieve-tube exudate was higher than in both the surrounding hypocotyl and in the cotyledonary tissues. Therefore, ubiquitin features properties which favour its transfer into the sieve tubes and which might rely on efficient transport through plasmodesmata. It is assumed that chaperones and ubiquitin are needed for the maintenance of sieve-tube function, e.g. to ensure correct folding of proteins. Their possible involvement in protein translocation through plasmodesmata from companion cells to sieve tubes is discussed.Abbreviations HSP heat-shock protein - Rubisco ribulose1,5-bisphosphate carboxylase-oxygenase - RBP Rubisco-subunit-binding protein - STEP sieve-tube exudate protein This research was supported by a TEMPUS grant European Community, Brüssel to E.K., which enabled the stay of A.P. The authors thank Dr. A. Bachmair (Institut für Botanik, Universität Wien, Austria), Prof. D. Wolf and Dr. A. Finger (Institut für Biochemie, Universität Stuttgart, Germany), Dr. S. Jentsch (Friedrich-Miescher Laboratorium, Max-Planck Institut Tübingen, Germany), Prof. U. Kull (Biologisches Institut, Universität Stuttgart, Germany), and Dr. T. Gatenby (Dupont, Wilmington, Del., USA) for generous supply of antisera used in this study. Improvement of English style was due to D. Schobert-Wiese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号