首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondrial DNA ligase III function is independent of Xrcc1   总被引:2,自引:1,他引:1       下载免费PDF全文
Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function would also be dependent upon Xrcc1. However, several lines of evidence indicate that this is not the case. First, western blot analysis failed to detect Xrcc1 protein in mitochondrial extracts. Second, DNA ligase III levels present in mitochondrial protein extracts from EM9 cells were indistinguishable from those seen in similar extracts from wild-type (AA8) cells. Third, the mitochondrial DNA content of both cell lines was identical. Fourth, EM9 cells displayed no defect in their ability to repair spontaneous mitochondrial DNA damage. Fifth, while EM9 cells were far more sensitive to the cytotoxic effects of ionizing radiation due to a defect in nuclear DNA repair, there was no apparent difference in the ability of EM9 and AA8 cells to restore their mitochondrial DNA to pre-irradiation levels. Thus, mitochondrial DNA ligase III function is independent of the Xrcc1 protein.  相似文献   

2.
EM9 cells are a line of Chinese hamster ovary cells that are sensitive to killing by ethylmethanesulfonate (EMS) and X ray, since they are unable to repair the DNA damage inflicted by these agents. Through DNA-mediated gene transfer, human DNA and a selectable marker gene, pSV2neo, were transfected into EM9 cells. Resistant clones of transfected cells were selected for by growth in EMS and G418 (an antibiotic lethal to mammalian cells not containing the transfected neo gene). One primary clone (APEX1) and one secondary clone (TEMS2) were shown to contain both marker and human DNA sequences by Southern blot. In cell survival studies, APEX1 was shown to be as resistant to EMS and X ray as the parental cell type AA8 (CHO cells). TEMS2 cells were found to be partially resistant to EMS and X ray, displaying an intermediate phenotype more sensitive than AA8 cells but more resistant than EM9 cells. Alkaline elution was used to assess the DNA strand-break rejoining ability of these cells at 23 degrees C. APEX1 cells showed DNA repair capacity equal to that of AA8 cells; 75% of the strand breaks were repaired with a rejoining T 1/2 of 3 min. TEMS2 showed similar levels of repair but a T 1/2 for repair of 9 min. EM9 cells repaired only 25% of the breaks and showed a T 1/2 for repair of 16 min. The DNA repair data are consistent with the survival data in that the more resistant cell lines showed a greater capacity for DNA repair. The data support the conclusion that APEX1 and TEMS2 cells contain a human DNA repair gene.  相似文献   

3.
XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.  相似文献   

4.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

5.
The combined effects of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) on the induction of 6-thioguanine (6TG)-resistant mutants and chromosome aberrations were examined in Chinese hamster V79 cells. Cells were simultaneously treated with EMS at a concentration of D20 and MMS at various concentrations for 3, 6 or 9 h. In other experiments cells were simultaneously treated with MMS at a concentration of D20 and EMS at various concentrations for 3, 6 or 9 h. The mathematical analysis of the combined effects of both chemicals for cell killing (cytotoxicity) and 6TG-resistant mutations indicates that synergistic interactions were observed for both cell killing and mutations induced by MMS and EMS. The frequency of chromosome aberrations induced by simultaneous treatment with MMS at a concentration of D20 and EMS at various concentrations for 3 h was additive. However, the frequency of chromosome aberrations induced by EMS at a concentration of D20 and MMS at various concentrations for 3 h was not significantly different from those induced by MMS alone.  相似文献   

6.
Isopropyl methanesulfonate (IPMS), an SN1 alkylating agent, is a direct-acting mutagen in bacteria. We recently reported that s.c. and topical administration of IPMS to mice resulted in the rapid induction of thymic lymphomas. Thymic lymphoma induction was not observed following administration of the SN2 alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). We have studied the reactions of IPMS with dAdo, dCyd, dGuo and dThd at pH 6.5 to 7.5 and 37 degrees C for 3 h. IPMS formed the following isopropyl (IP) adducts: 7-IP-Gua (4% yield), O6-IP-Gua (8%), O2-IP-Cyt (1%), O2-IP-dThd (2%), 3-IP-dThd (1%), and O4-IP-dThd (0.4%). Adducts were characterized from UV and mass spectra. IPMS was reacted in vitro with calf thymus DNA (pH 6.5 to 7.5, 37 degrees C, 3 h) and yielded (nmol/mg DNA): 7-IP-Gua (22) O6-IP-dGuo (11), O2-IP-Cyt (9), O2-IP-dThd (2), O4-IP-dThd (2), 3-IP-Ade (0.2) and 3-IP-dThd (0.2). The relatively greater alkylation of exocyclic oxygen atoms in DNA by IPMS compared to values for MMS and EMS reported by others, may play a role in the induction of thymic lymphomas in mice by IPMS and the lack of such activity by MMS and EMS.  相似文献   

7.
The contribution of three single nucleotide polymorphisms (SNPs) that substitute amino acids in the X-ray repair cross-complementing gene 1 (XRCC1) protein, Arg194Trp (R194W), Arg280His (R280H), and Arg399Gln (R399Q), to the risk of various types of cancers has been extensively investigated by epidemiological researches. To investigate whether two of these polymorphisms directly influence their repair ability, we established Chinese hamster ovary (CHO) EM9 cell lines transfected with XRCC1(WT), XRCC1(R194W), or XRCC1(R280H) genes and analyzed the DNA repair ability of these cells. The EM9 cells that lack functional XRCC1 proteins exhibit severe sensitivity to methyl methanesulfonate (MMS). Introduction of the human XRCC1(WT) and XRCC1(R194W) gene to EM9 cells restored the MMS sensitivity to the same level as the AA8 cells, a parental cell line. However, introduction of the XRCC1(R280H) gene partially restored the MMS sensitivity, resulting in a 1.7- to 1.9-fold higher sensitivity to MMS compared with XRCC1(WT) and XRCC1(R194W) cells at the LD(50) value. The alkaline comet assay determined diminished base excision repair/single strand break repair (BER/SSBR) efficiency in XRCC1(R280H) cells as observed in EM9 cells. In addition, the amount of intracellular NAD(P)H decreased in XRCC1(R280H) cells after MMS treatment. Indirect immunofluorescence staining of the XRCC1 protein showed an intense increase in the signals and clear foci of XRCC1 in the nuclei of the XRCC1(WT) cells, but a faint increase in the XRCC1(R280H) cells, after MMS exposure. These results suggest that the XRCC1(R280H) variant protein is defective in its efficient localization to a damaged site in the chromosome, thereby reducing the cellular BER/SSBR efficiency.  相似文献   

8.
We have examined survival and mutagenesis of bacteriophage T7 after exposure to the alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). It was found that although both alkylating agents caused increased reversion of specific T7 mutations, EMS caused a higher frequency of reversion than did MMS. Exposure of the host cells to ultraviolet light so as to induce the SOS system resulted in increased survival (Weigle reactivation) of T7 phage damaged with either EMS or MMS. However, after SOS induction of the host we did not detect an accompanying increase in mutation frequency measured as either reversion of specific T7 mutants or by generation of mutations in the T7 gene that codes for phage ligase. Neither mutation frequency nor survival of alkylated phage was affected by the umuD,C mutation in the Escherichia coli host nor by the presence of plasmid pKM101. This may mean that the mode of Weigle reactivation that is detected in T7 is not mutagenic in nature.  相似文献   

9.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

10.
Summary Excision repair was studied in normal human and ataxia telangiectasia (AT) cells proficient in repair of UV and its mimetic chemicals, and in xeroderma pigmentosum group C (XP C) cells (deficient in repair of UV and its mimetics), after treatment with several combinations of chemical carcinogens, by the photolysis of bromodeoxyuridine incorporated into parental DNA during repair. Results indicate that repair was additive in AT, and XP C cells treated with N-acetoxy-2-acetylaminofluorene (AAAF) plus ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) indicating that there are different rate limiting steps for removal of both types of damage. Data on the combinations of 4-nitroquinoline 1-oxide (4NQO) plus MMS or EMS are difficult to interpret, but they do not indicate inhibition of DNA repair.Research carried out under the auspices of the U.S. Dept. of Energy  相似文献   

11.
The Cdc6 protein is an essential component of pre-replication complexes (preRCs), which assemble at origins of DNA replication during the G1 phase of the cell cycle. Previous studies have demonstrated that, in response to ionizing radiation, Cdc6 is ubiquitinated by the anaphase promoting complex (APC(Cdh1)) in a p53-dependent manner. We find, however, that DNA damage caused by UV irradiation or DNA alkylation by methyl methane sulfonate (MMS) induces Cdc6 degradation independently of p53. We further demonstrate that Cdc6 degradation after these forms of DNA damage is also independent of cell cycle phase, Cdc6 phosphorylation of the known Cdk target residues, or the Cul4/DDB1 and APC(Cdh1) ubiquitin E3 ligases. Instead Cdc6 directly binds a HECT-family ubiquitin E3 ligase, Huwe1 (also known as Mule, UreB1, ARF-BP1, Lasu1, and HectH9), and Huwe1 polyubiquitinates Cdc6 in vitro. Degradation of Cdc6 in UV-irradiated cells or in cells treated with MMS requires Huwe1 and is associated with release of Cdc6 from chromatin. Furthermore, yeast cells lacking the Huwe1 ortholog, Tom1, have a similar defect in Cdc6 degradation. Together, these findings demonstrate an important and conserved role for Huwe1 in regulating Cdc6 abundance after DNA damage.  相似文献   

12.
Mutation induction and cell killing produced by selected alkylsulfates and alkanesulfonates have been quantitated using the Chinese hamster ovary/hypoxanthine--guanine phosphoribosyl transferase (CHO/HGPRT) system. Dose--response relationships of cytotoxicity and mutagenicity are presented for two alkylsulfates [dimethylsulfate (DMS), diethylsulfate (DES)] and three alkyl alkanesulfonates [methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), and isopropyl methanesulfonate (iPMS)]. Under the experimental conditions employed, cytotoxicity decreased with the size of the alkyl group. DMS was more toxic than DES, and MMS was more toxic than EMS and iPMS. All agents produced linear dose--response of mutation induction: DMS was more mutagenic than DES, and MMS was more mutagenic than EMS and iPMS based on mutants induced per unit mutagen concentration. However, the following relative mutagenic potency was observed when comparisons were made at 10% survival: DES greater than DMS; EMS greater than MMS greater than iPMS.  相似文献   

13.
The molecular dosimetry of methyl methanesulfonate (MMS) in the germ cells of male mice has been investigated. The mice were injected i.p. with 100 mg/kg of [3H]MMS and methylations per sperm head, per deoxynucleotide, and per unit of protamine were then determined over a 3-week period. The methylations per sperm head paralleled the dominant lethal frequency curve for MMS, reaching a maximum of between 22 and 26 million methylations per vas sperm head 8-11 days after treatment. Methylation of sperm DNA was greatest at 4 h (the earliest time point studied) after treatment, with 16.6 methylations/10(5) deoxynucleotides. DNA methylation gradually decreased during the subsequent 3-week period. The methylation of germ-cell DNA did not increase in the stages most sensitive to MMS (late spermatids leads to early spermatozoa) and was not correlated with the dominant lethal frequency curve for MMS. However, methylation of protamine did increase in the germ-cell stages most sensitive to MMS, and showed an excellent correlation with the incidence of dominant lethals produced by MMS in the different germ-cell stages. The pattern of alkylation produced by MMS in the developing germ-cell stages of the mouse is similar to that found for EMS. However, for equimolar exposures, MMS alkylates the germ cells 5-7 times more than does EMS. Hydrolyzed samples of protamine from [3H]MMS-exposed animals were subjected to thin-layer chromatography and amino acid analysis. Both procedures showed that most of the labeled material recovered from the hydrolysates co-chromatographed with authentic standards of S-methyl-L-cysteine. The amino acid analyses showed an average of approximately 80% of the labeled material eluting with S-methyl-L-cysteine. The mechanism of action of both MMS and EMS on the developing germ cells appears to be similar. The occurrence of S-methyl-L-cysteine as the major reaction product in sperm protamine after MMS exposure supports our initial model of how dominant lethals are induced in mouse germ cells by these chemicals: Alkylation of cysteine sulfhydryl groups contained in mouse-sperm protamine blocks normal disulfide-bond formation, preventing proper chromatin condensation in the sperm nucleus. Subsequent stresses produced in the chromatin structure eventually lead to chromosome breakage, with resultant dominant lethality.  相似文献   

14.
Human peripheral blood lymphocytes stimulated in vitro for 6 hr were exposed to a low (conditioning) dose of ethyl methanesulfonate (EMS; 1.5 x 10(-4) M) or methyl methanesulfonate (MMS; 1.5 x 10(-5) M). After 6 hr, the cells were treated with a high (challenging) concentration of the same agent (1.5 x 10(-3) M EMS or 1.5 x 10(-4) M MMS). The cells that received both conditioning and challenging doses became less sensitive to the induction of sister chromatid exchanges (SCEs) than those which did not receive the pretreatment with EMS or MMS. They responded with lower frequencies of SCEs. This suggests that conditioning dose of EMS or MMS has offered the lymphocytes to have decreased SCEs. This led to the realization that pre-exposure of lymphocytes to low dose can cause the induction of repair activity. This is a clear indication of the existence of adaptive response induced by alkylating agents whether it is ethylating or methylating in human lymphocytes in vitro.  相似文献   

15.
E W Vogel 《Mutation research》1986,162(2):201-213
Postmeiotic cell stages of repair-proficient ring-X (RX) males were treated with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethylnitrosamine (DEN) or ethylnitrosourea (ENU) and then mated to either repair-defective (mei-9L1) or to repair-competent females (mei-9+). Absence of the mei-9+ function resulted in a hypermutability effect to all alkylating agents (AAs) when they were assayed for their ability to induce chromosomal aberrations (chromosome loss; CL), irrespective of marked differences in distribution of DNA adducts brought about by these AAs. This picture is different from that described previously for the induction of point mutations (Vogel et al., 1985a). There, evidence was presented indicating that reduction in DNA excision repair does not affect point mutation induction (recessive lethals) by those AAs most efficient in ring-oxygen alkylation such as ENU, DEN, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and isopropyl methanesulfonate (iPMS): the order of hypermutability of AAs with mei-9L relative to mei-9+ was MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females were plotted against those determined for mei-9+ females, straight lines of following slopes were obtained: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4, and iPMS = ENU = DEN = ENNG = 1. Those findings, together with the recent observation that AAs do not split into two groups when assayed for their ability to cause CL, point to the involvement of different DNA alkylation products in ENU- and DEN-induced chromosome loss vs. that of point mutations. It is concluded that with ENU and DEN chromosomal loss results from N-alkylation products whereas point mutations (SLRL) are the consequence of interactions with oxygen-sites in DNA. Thus, as a consequence of a very dominating role of O-ethylguanine (and possibly O4-alkylation of thymine), N-alkylation in DNA does not contribute measurably to mutation induction in the case of ENU-type mutagens while O-alkylation, very clearly, does not show a positive correlation with the formation of chromosome breakage events in Drosophila. Conversely, it appeared that with MMS-type mutagens (MMS; dimethyl sulfate, DMS; trimethyl phosphate, TMP), alkylation products such as 7-methylguanine and 3-methyladenine, if unrepaired or misrepaired, are potentially mutagenic lesions causing both mutations and chromosomal aberrations.  相似文献   

16.
The induction and rejoining of gamma-ray-induced DNA strand breaks were measured in a Chinese hamster ovary cell line, AA8, and in two radiosensitive clones (EM9 and NM2) derived from it. The kinetics of recovery from sublethal damage (SLD) and potentially lethal damage (PLD) has previously been characterized in each of these lines [vanAnkeren et al., Radiat. Res., 115, 223-237 (1988)]. No significant differences were observed among the cell lines in the yields of either DNA single-strand breaks (SSBs) or double-strand breaks (DSBs) as assayed by filter elution. Data for SSB rejoining in AA8 and NM2 cells irradiated with 7.5 Gy were fit by a biexponential process (t1/2 values of approximately 4 and 80 min). In comparison, SSB rejoining in EM9 cells was initially slower (t1/2 = 10 min) and a higher level of SSBs was unrejoined 6 h after irradiation. DSB rejoining in AA8 cells assayed at pH 9.6 was also biphasic (t1/2 values of 15 and 93 min), although when assayed at pH 7.0, most (approximately 80%) of the damage was rejoined at a constant rate (t1/2 = 45 min) during the first 2 h. EM9 cells exhibited a slower initial rate of DSB rejoining when assayed at pH 9.6 but showed no difference compared with AA8 cells in DSB rejoining when assayed at pH 7.0. These results indicate that radiosensitive EM9 cells, whose kinetics of recovery from SLD and PLD was the same as that of AA8 cells, have a defect in the fast phase of SSB rejoining but no measurable defect in DSB rejoining. Conversely, NM2 cells, which displayed a reduced shoulder width on their survival curve and decreased recovery from SLD, had no demonstrable defects in the rate or extent of rejoining of DSBs or SSBs. When compared with the SLD and PLD data reported previously, these results suggest that there is no direct correlation between either of these recovery processes and the rejoining of SSBs or DSBs as assayed here.  相似文献   

17.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

18.
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).  相似文献   

19.
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).  相似文献   

20.
Because of its characteristics, the comet assay has been used to evaluate the ability of virtually any type of eukaryotic cell to repair different kinds of DNA damage, including double and single strand breaks and base damage. The ability to detect excision repair sites using the alkaline version can be enhanced by the inclusion of repair inhibitors, DNA synthesis inhibitors, or chain terminators. In this sense, we evaluated the ability of hydroxyurea (HU) and cytosine arabinoside (Ara-C), for detecting lesions produced by the alkylating agents ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) in three different cell systems. Two hundred cells for experimental point were analyzed in the alkaline version of the comet assay, and the results are evidences of the utility of the assay to detect alkylation of bases in the cells lines MRC-5 and TK-6, as the treatment with HU +Ara-C significantly increases both the basal and induced frequency of DNA damage. The use of whole blood, although it detected the effects of MMS, with and without repair inhibitors, failed to detect the effect of the selected dose of EMS and does not permit detection increases in the background level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号