首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Egg laying in Caenorhabditis elegans has been well studied at the genetic and behavioral levels. However, the neural basis of egg-laying behavior is still not well understood; in particular, the roles of specific neurons and the functional nature of the synaptic connections in the egg-laying circuit remain uncharacterized. RESULTS: We have used in vivo neuroimaging and laser surgery to address these questions in intact, behaving animals. We have found that the HSN neurons play a central role in driving egg-laying behavior through direct excitation of the vulval muscles and VC motor neurons. The VC neurons play a dual role in the egg-laying circuit, exciting the vulval muscles while feedback-inhibiting the HSNs. Interestingly, the HSNs are active in the absence of synaptic input, suggesting that egg laying may be controlled through modulation of autonomous HSN activity. Indeed, body touch appears to inhibit egg laying, in part by interfering with HSN calcium oscillations. CONCLUSIONS: The egg-laying motor circuit comprises a simple three-component system combining feed-forward excitation and feedback inhibition. This microcircuit motif is common in the C. elegans nervous system, as well as in the mammalian cortex; thus, understanding its functional properties in C. elegans may provide insight into its computational role in more complex brains.  相似文献   

2.
The invariant cell lineage of nematodes allows the formation of organ systems, like the egg-laying system, to be studied at a single cell level. The Caenorhabditis elegans egg-laying system is made up of the vulva, the mesodermal gonad and muscles and several neurons. The gonad plays a central role in patterning the underlying ectoderm to form the vulva and guiding the migration of the sex myoblasts to their final position. In Pristionchus pacificus, the egg-laying system is homologous to C. elegans, but comparative studies revealed several differences at the cellular and molecular levels during vulval formation. For example, the mesoblast M participates in lateral inhibition, a process that influences the fate of two vulval precursor cells. Here, we describe the M lineage in Pristionchus and show that both the dorsal and ventral M sublineages are involved in lateral inhibition. Mutations in the homeotic gene Ppa-mab-5 cause severe misspecification of the M lineage, resembling more the C. elegans Twist than the mab-5 phenotype. Ectopic differentiation of P8.p in Ppa-mab-5 results from at least two separate interactions between M and P8.p. Thus, interactions among the Pristionchus egg-laying system are complex, involving multiple cells of different tissues occurring over a distance.  相似文献   

3.
J H Thomas  M J Stern  H R Horvitz 《Cell》1990,62(6):1041-1052
Egg laying by the nematode Caenorhabditis elegans requires the functioning of the vulva, the gonad, the egg-laying muscles, and the two HSN neurons, which innervate these muscles. By analyzing a newly isolated mutant (dig-1) that displaces the gonad, we discovered that cell interactions coordinate the spatial relationships among the different components of the egg-laying system. First, the gonad induces the formation of the vulva, and vulval induction by dorsal gonads strongly suggests that the inductive signal can act at a distance. Second, the gonad acts at a distance to regulate the migrations of the sex myoblasts that generate the egg-laying musculature. Third, the positions of the axonal branch and synapses of each HSN neuron are displaced correspondingly with the rest of the egg-laying system in dig-1 animals, which suggests that cell interactions also control aspects of HSN development.  相似文献   

4.
5.
We haveidentified four neurons (VC4, VC5, HSNL, HSNR) inCaenorhabditis elegans adult hermaphrodites that expressboth the vesicular acetylcholine transporter and the vesicularmonoamine transporter. All four of these cells are motor neurons thatinnervate the egg-laying muscles of the vulva. In addition, they allexpress choline acetyltransferase, the synthetic enzyme foracetylcholine. The distributions of the vesicular acetylcholinetransporter and the vesicular monoamine transporter are not identicalwithin the individual cells. In mutants deficient for either of thesetransporters, there is no apparent compensatory change in theexpression of the remaining transporter. This is the first report ofneurons that express two different vesicular neurotransmittertransporters in vivo.

  相似文献   

6.
From nematodes to humans, animals employ neuromodulators like serotonin to regulate behavioral patterns and states. In the nematode C. elegans, serotonin has been shown to act in a modulatory fashion to increase the rate and alter the temporal pattern of egg laying. Though many candidate effectors and regulators of serotonin have been identified in genetic studies, their effects on specific neurons and muscles in the egg-laying circuitry have been difficult to determine. Using the genetically encoded Ca(2+) indicator cameleon, we found that serotonin acts directly on the vulval muscles to increase the frequency of Ca(2+) transients. In contrast, we found that the spontaneous activity of the egg-laying motorneurons was silenced by serotonin. Mutations in G protein alpha subunit genes altered the responses of both vulval muscles and egg-laying neurons to serotonin; specifically, mutations in the G(q)alpha homolog egl-30 blocked serotonin stimulation of vulval muscle Ca(2+) transients, while mutations in the G(o)alpha homolog goa-1 prevented the silencing of motorneuron activity by serotonin. These data indicate that serotonin stimulates egg laying by directly modulating the functional state of the vulval muscles. In addition, serotonin inhibits the activity of the motorneurons that release it, providing a feedback regulatory effect that may contribute to serotonin adaptation.  相似文献   

7.
8.
Serotonin (5-HT) stimulation of egg-laying in Caenorhabditis elegans is abolished in ser-1 (ok345) animals and is rescued by ser-1 expression in vulval muscle. A PDZ binding motif (ETFL) at the SER-1 C-terminus is not essential for rescue, but facilitates SER-1 signaling. SER-1 binds specifically to PDZ domain 10 of the multi-PDZ domain protein, MPZ-1, based on GST pulldown and co-immunoprecipitation. mpz-1 is expressed in about 60 neurons and body wall and vulval muscles. In neurons, GFP-tagged MPZ-1 is punctate and colocalizes with the synaptic marker, synaptobrevin. The expression patterns of ser-1 and mpz-1 overlap in 3 pairs of neurons and vulval muscle. In addition, MPZ-1 also interacts with other GPCRs with acidic amino acids in the -3 position of their PDZ binding motifs. mpz-1 RNAi reduces 5-HT stimulated egg-laying in wild type animals and in ser-1 mutants rescued by muscle expression of SER-1. In contrast, mpz-1 RNAi has no effect on 5-HT stimulated egg-laying in ser-1 mutants rescued by expression of a truncated SER-1 that lacks the C-terminal PDZ binding motif. The overexpression of MPZ-1 PDZ domain 10 also inhibits 5-HT stimulated egg-laying. These studies suggest that the SER-1/MPZ-1 interaction facilitates SER-1 mediated signaling.  相似文献   

9.
Egg-laying defective mutants of the nematode Caenorhabditis elegans   总被引:11,自引:0,他引:11  
Trent C  Tsuing N  Horvitz HR 《Genetics》1983,104(4):619-647
We have isolated 145 fertile mutants of C. elegans that are defective in egg laying and have characterized 59 of them genetically, behaviorally and pharmacologically. These 59 mutants define 40 new genes called egl. for egg-laying abnormal. Most of the other mutants are defective in previously identified genes. The egl mutants differ with respect to the severity of their egg-laying defects and the presence of behavioral or morphological pleiotropies. We have defined four distinct categories of mutants based on their responses to the pharmacological agents serotonin and imipramine, which stimulate egg laying by wild-type hermaphrodites. These drugs test the functioning of the vulva, the vulval and uterine muscles and the hermaphrodite-specific neurons (HSNs), which innervate the vulval muscles. Mutants representing 14 egl genes fail to respond to serotonin and to imipramine and are likely to be defective in the functioning of the vulva or the vulval and uterine muscles. Four mutants (representing four different genes) lay eggs in response to serotonin but not to imipramine and appear to be egg-laying defective because of defects in the HSNs; three of these four were selected specifically for these drug responses. Mutants representing seven egl genes lay eggs in response to serotonin and to imipramine. One egl mutant responds to imipramine but not to serotonin. The remaining egl mutants show variable or intermediate responses to the drugs. Two of the HSN-defective mutants, egl-1 and her-1(n695), lack HSN cell bodies and are likely to be expressing the normally male-specific program of HSN cell death. Whereas egl-1 animals appear to be defective specifically in HSN development, her-1(n695) animals exhibit multiple morphological pleiotropies, displaying partial transformation of the sexual phenotype of many cells and tissues. At least two of the egl mutants appear to be defective in the processing of environmental signals that modulate egg laying and may define new components of the neural circuitry that control egg laying.  相似文献   

10.
Shen K  Fetter RD  Bargmann CI 《Cell》2004,116(6):869-881
Synaptic connections in the nervous system are directed onto specific cellular and subcellular targets. Synaptic guidepost cells in the C. elegans vulval epithelium drive synapses from the HSNL motor neuron onto adjacent target neurons and muscles. Here, we show that the transmembrane immunoglobulin superfamily protein SYG-2 is a central component of the synaptic guidepost signal. SYG-2 is expressed transiently by primary vulval epithelial cells during synapse formation. SYG-2 binds SYG-1, the receptor on HSNL, and directs SYG-1 accumulation and synapse formation to adjacent regions of HSNL. syg-1 and syg-2 mutants have defects in synaptic specificity; the HSNL neuron forms fewer synapses onto its normal targets and forms ectopic synapses onto inappropriate targets. Misexpression of SYG-2 in secondary epithelial cells causes aberrant accumulation of SYG-1 and synaptic markers in HSNL adjacent to the SYG-2-expressing cells. Our results indicate that local interactions between immunoglobulin superfamily proteins can determine specificity during synapse formation.  相似文献   

11.
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintain a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.  相似文献   

12.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

13.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

14.
Shen K  Bargmann CI 《Cell》2003,112(5):619-630
During nervous system development, neurons form reproducible synapses onto specific targets. Here, we analyze the development of stereotyped synapses of the C. elegans HSNL neuron in vivo. Postsynaptic neurons and muscles were not required for accurate synaptic vesicle clustering in HSNL. Instead, vulval epithelial cells that contact HSNL act as synaptic guidepost cells that direct HSNL presynaptic vesicles to adjacent regions. The mutant syg-1(ky652) has defects in synapse formation that resemble those in animals that lack vulval epithelial cells: HSNL synaptic vesicles fail to accumulate at normal synaptic locations and form ectopic anterior clusters. syg-1 encodes an immunoglobulin superfamily protein that acts in the presynaptic HSNL axon. SYG-1 protein is localized to the site of future synapses, where it initiates synapse formation and localizes synaptic connections in response to the epithelial signal. SYG-1 is related to Drosophila IrreC and vertebrate NEPH1 proteins, which mediate cell-cell recognition in diverse developmental contexts.  相似文献   

15.
Mammalian hyaluronidases degrade hyaluronan and some structurally related glycosaminoglycans. We generated a deletion mutant in the Caenorhabditis elegans orthologue of mammalian hyaluronidase, hya-1. Mutant animals are viable and grossly normal, but exhibit defects in vulval morphogenesis and egg-laying and showed increased staining with alcian blue, consistent with an accumulation of glycosaminoglycan. A hya-1::GFP reporter was expressed in a restricted pattern in somatic tissues of the animal with strongest expression in the intestine, the PLM sensory neurons and the vulva. Total protein extracts from wild-type animals exhibited chondroitin-degrading but not hyaluronan-degrading activity. Chondroitinase activities were observed at both neutral and acidic pH conditions while both neutral and acidic activities were absent in extracts from hya-1 mutant strains. We also evaluated the function of oga-1, which encodes the C. elegans orthologue of MGEA-5, a protein with hyaluronan-degrading activity in vitro. oga-1 is expressed in muscles, vulval cells and the scavenger-like coelomocytes. An oga-1 mutant strain exhibited egg-laying and vulval defects similar to those of hya-1; chondroitinase activity was unaffected in this mutant.  相似文献   

16.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.  相似文献   

17.
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.  相似文献   

18.
The cell-cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell-cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

19.
M. Sundaram  I. Greenwald 《Genetics》1993,135(3):755-763
The lin-12 gene of Caenorhabditis elegans is thought to encode a receptor for intercellular signals that specify certain cell fates during development. We describe several alleles of lin-12 that reduce but do not eliminate lin-12 activity (hypomorphic alleles). These alleles cause a novel egg-laying defective (Egl) phenotype in hermaphrodites as well as incompletely penetrant cell fate transformations seen with high penetrance in lin-12 null mutants. Characterization of the Egl phenotype revealed additional roles of lin-12 in the development of the egg-laying system that were not apparent from studying lin-12 null mutants: lin-12 activity is required for proper early vulval morphogenesis as well as for some unknown later aspect of egg-laying system development. Reversion of the Egl phenotype caused by one lin-12 hypomorphic allele was used to identify potential interacting genes as described in the accompanying paper.  相似文献   

20.
The cell–cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell–cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号