首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptors for the monokine, interleukin-1 (IL-1), have been successfully immunoprecipitated with a xenogeneic antiserum raised in our laboratories. Receptors solubilized from mouse cell membranes as well as nascent chains of molecules that could bind IL-1 were immunoprecipitated. Receptor complexes were identified on mouse cell lines which express IL-1 receptors by affinity cross-linkage of the radiolabeled ligands, IL-1-alpha or IL-1-beta. Soluble IL-1 or IL-1 nonspecifically associated with membranes of cells which do not express IL-1 receptors was not immunoprecipitated. It is apparent, thus, that antibodies present in the xenogeneic antiserum could specifically bind to the IL-1 receptor moiety within the complex. The major proportion of IL-1 receptor complexes that were reproducibly immunoprecipitated had a molecular weight of 97,000. Cell membrane associated receptors for the monokine, tumor necrosis factor, were not immunoprecipitated. These antibodies have contributed to the understanding of the role of IL-1 receptors in cytolytic effector T cell generation and should contribute further in the purification and characterization of the IL-1 receptor moiety, as well as in determining IL-1-mediated mechanisms of cellular activation.  相似文献   

2.
We have investigated the interaction of IL-1 and its receptor on a murine osteoblastic cell line, MC3T3.E1, with regard to binding, internalization, and the fate of the receptor-ligand complex following internalization. Binding experiments indicated that this cell line possesses a high affinity receptor (Kd 1.02 x 10(-10) M) that binds both IL-1 alpha and IL-1 beta, and has approximately 6500 receptors per cell. Cross-linking experiments indicated that the receptor has a molecular weight of 100,000 daltons. Binding of IL-1 to the receptor is inhibited by the Interleukin Receptor Antagonist Protein (IRAP). These characteristics suggest that the murine osteoblastic receptor resembles that found on T lymphocytes and fibroblasts. Internalization experiments showed that this process is fairly rapid and results in degradation of the ligand and subsequent loss of degraded IL-1 from the cell. In this respect, processing of the receptor-ligand complex mimics that observed with IL-1 receptors on murine bone marrow cells, pre-B cells, and macrophages. Although the reasons for these differences are unclear, it may be that, unlike fibroblasts, osteoblasts may function as an effector cell which rapidly removes IL-1 from the immediate environment via ligand degradation while at the same time initiating bone resorption via stimulation of osteopontin biosynthesis.  相似文献   

3.
Anti-receptor antibodies have previously been used in two cytokine systems (IL-1 and TNF alpha) to identify the existence of different cytokine receptors on different cell types. In this study, we have similarly used two approaches to evaluate whether IL-4 receptors on different cell types are identical, or whether more than one species of IL-4 receptor exists. The first approach involved production of monoclonal antibodies specific for the IL-4 receptor expressed by the murine mast cell line, MC/9. Six anti-IL-4 receptor monoclonal antibodies were produced against the purified soluble extracellular domain of the recombinant IL-4 receptor derived from MC/9 cells. These antibodies were capable of binding to and specifically immunoprecipitating the soluble extracellular domain of the recombinant mast cell IL-4 receptor. Following biotinylation of the antibodies and addition of phycoerythrin-streptavidin, their binding to cell associated IL-4 receptors on MC/9 mast cells could be readily visualized by immunofluorescence. Using this approach, the anti-mast cell IL-4R antibodies were found to specifically bind IL-4 receptors expressed on a variety of other murine cell types, including T cells, B cells, macrophages, fibroblasts, and L cells. The antibodies did not bind to two human cell lines known to bind human but not murine IL-4. The intensity of staining was directly related to the number of IL-4 binding sites identified previously by receptor-ligand equilibrium binding analyses. As a second approach to evaluating potential receptor heterogeneity, we constructed S1 nuclease protection assay probes for two separate regions of the mast cell IL-4 receptor, one located in the extracellular domain and one in the intracellular domain. Subsequent S1 analyses showed that both regions are expressed by the following types of cells: T cells, B cells, macrophages, myeloid cells, L cells, and stromal cells. The two approaches used in this study therefore indicate that the same or highly similar IL-4 receptor species is expressed by a wide variety of hemopoietic and nonhemopoietic cells. Since the anti-IL-4 receptor antibodies produced in this study did not block binding of IL-4 to its receptor, we cannot exclude the possible existence of a second type of IL-4R coexpressed on the cells tested in this study, or expressed uniquely by other cell types that were not investigated.  相似文献   

4.
The interactions of cell surface receptors with their ligands, crucial for initiating many immunological responses, are often stabilized by receptor dimerization/oligomerization, and by multimeric interactions between receptors on one cell with their ligands or cognate receptors on the apposing cell. Current techniques for studying receptor-ligand interactions, however, do not always allow receptors to move laterally to enable dimerization/ oligomerization, or to interact multimerically with ligands on cell surfaces. For these reasons detection of low- affinity receptor-ligand interactions has been difficult. Utilizing a novel chelator-lipid, nitrilotriacetic acid di-tetradecylamine (NTA-DTDA), we have developed a convenient liposome system for directly detecting low-affinity receptor-ligand interactions. Our studies using recombinant soluble forms of murine CD40 and B7.1, and murine and human CD4, each possessing a hexhistidine tag, showed that these proteins can be anchored or 'engrafted' directly onto fluorescently labelled liposomes via a metal-chelating linkage with NTA-DTDA, permitting them to undergo dimerization/oligomerization and multimeric binding with ligands on cells. Fluorescence- activated cell sorter (FACS) analyses demonstrated that while there is little if any binding of soluble forms of murine CD40 and B7.1, and murine and human CD4 to cells, engrafted liposomes bind specifically to cells expressing the appropriate cognate receptor, often giving a fluorescence 4-6-fold above control cells. Such liposomes could detect directly the low-affinity interaction of murine CD40 and B7.1 with CD154- and CD28-expressing cells, respectively, and the interaction of CD4 with MHC Class II, which has hitherto defied direct detection except through mutational analysis and mAb blocking studies.  相似文献   

5.
Lee FH  Haskell C  Charo IF  Boettiger D 《Biochemistry》2004,43(22):7179-7186
Receptor-ligand binding analyses have generally used soluble components to measure thermodynamic binding constants. In their biological context, adhesion receptors bind to an immobile ligand and the binding reaction is confined to the cell-substrate contact zone. We have developed a new procedure based on the spinning disk technology to measure the number of receptor-ligand bonds in the contact zone. Application of this methodology to the CX3CR1-fractalkine and the CXCR1-IL-8 receptor-ligand systems demonstrated that the level of binding to an immobilized ligand is reduced by several orders of magnitude in comparison to solution binding. A comparison of the solution binding and contact zone binding constants shows that the effect of ligand immobilization was similar for each system. In contrast, although the CXCR1-IL-8 bond had the higher affinity, the average bond strength was only 10% of that for the CX3CR1 bond. Because fractalkine can be expressed as a cell surface-bound protein, CX3CR1 has been proposed to function as an adhesion receptor. The higher bond strength suggests that the bond architecture has also evolved to serve an adhesion function.  相似文献   

6.
Abstract: Somatostatin (SRIF) induces its diverse physiological actions through interactions with different receptor subtypes. Multiple SRIF receptor subtypes have recently been cloned. To analyze the physical properties of receptor subtype SSTR2, two different peptide-directed antibodies were generated against SSTR2. Antibody “2e3,” directed against the peptide SSCTINWPGESGAWYT (residues 191–206), corresponding to a region in the predicted third extracellular domain of mouse SSTR2, and antibody “2i4,” directed against the peptide SGTEDGERSDS (residues 333–343) from the predicted cytoplasmic tail of mouse SSTR2, were developed. In Chinese hamster ovary (CHO) cells stably expressing the mouse SSTR2 gene (CHOB), the antibody 2e3 recognized specifically a protein of 93-kDa protein by immunoblotting. No specific immunoreactivity was detected by 2e3 in nontransfected CHO cells or CHO cells stably expressing vector alone or human SSTR1 or mouse SSTR3 genes. The antibody 2i4 specifically immunoprecipitated SSTR2 solubilized from CHOB cells that could be labeled with the SSTR2-specific ligand 125I-MK-678. Furthermore, both 2e3 and 2i4 specifically immunoprecipitated 93-kDa [35S]methionine-labeled proteins from CHOB cells, indicating that they recognize the same proteins. In contrast to studies in CHOB cells, immunoblotting studies showed that 2e3 detected specifically a single 148-kDa protein from different regions of the rat brain that have previously been shown to express high levels of SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. In contrast, no immunoreactivity was detected in rat kidney, liver, or lung, which do not express SSTR2. No 93-kDa protein was detected specifically in the rat brain. The 148-kDa protein detected by 2e3 is an SRIF receptor because 2e3 and 2i4 specifically immunoprecipitated solubilized rat brain SRIF receptors that could be reversibly labeled with 125I-MK-678. As in rat brain, 2e3 interacted specifically with a single 148-kDa protein in rat pituitary, in the rat pancreatic cell line AR42J, and in the HEK 293 cell line derived from human kidney, all of which express SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. These findings indicate that rat brain and pituitary, as well as a pancreatic and a kidney cell line, express primarily a form of SSTR2 different from CHOB cells. The multiple forms of SSTR2 may result from differential post-translational processing of SSTR2 because 2e3 immunoprecipitated 41-kDa in vitro translation products generated from mRNA extracted from CHOB and AR42J cells. This 41-kDa protein has the predicted size of unprocessed SSTR2. These results demonstrate that 2e3 and 2i4 antibodies interact specifically with SSTR2. Detection of two different size proteins by the SSTR2 peptide-directed antibodies suggests the existence of multiple forms of SSTR2.  相似文献   

7.
Polyadenylated RNA prepared from first trimester human placenta was translated in a membrane-free cell-free system derived from wheat germ. Analysis of the [35S]methionine-labeled products by SDS-polyacrylamide electrophoresis demonstrated two proteins with apparent Mrs of 14,500 and 16,000 that were specifically immunoprecipitated by antiserum to reduced and carboxylated bovine LHα, and two different proteins with apparent Mrs of 18,500 and 21,000 that were specifically immunoprecipitated by antiserum to hCGβ. None of these products was sensitive to cleavage by endoglycosidase H, whereas the Mr 21,000 product precipitated by antisera to bovine LHα and to hCGα from translations supplemented by canine pancreatic microsomes was processed to a product with Mr 13,000 by endoglycosidase H. We suggest that the two forms of the α and β subunit precursors could arise from the translation of two distinct mRNAs encoding each subunit.  相似文献   

8.
Rat lung tissue was labeled with [35S]methionine and the major surfactant-associated proteins immunoprecipitated using a specific antiserum. The protein pattern obtained was very similar to that seen in rat bronchoalveolar lavage. Rat lung mRNA was subsequently translated in an in vitro rabbit reticulocyte system, and surfactant-associated protein-related polypeptides were immunoprecipitated. A 26-kDa polypeptide was identified and characterized as follows. (a) Unlabeled surfactant proteins added to the immunoprecipitation mixture completely inhibited its immunoprecipitation. (b) Two-dimensional gel electrophoresis of the 26-kDa protein resolved it into 3 isoforms. (c) Inclusion of dog pancreatic microsomes in the translation mixture resulted in the formation of two distinct higher molecular weight groups of isoforms, suggesting that the 26-kDa protein is destined to become a glycoprotein. Immunoprecipitation of [35S]methionine-labeled rat lung tissue proteins after tunicamycin treatment resulted in 3 isoforms, identical to the ones seen in the primary translation products. In addition, expression of the surfactant proteins appears specific to the lung.  相似文献   

9.
10.
Poly(A)-rich RNA has been isolated from calf thymus and translated in vitro in a rabbit reticulocyte translation system. Three peptides with Mr = 58,000, 33,000, and 13,000 were specifically immunoprecipitated from the translation products with calf terminal deoxynucleotidyltransferase antiserum. An oligo(dT)-purified preparation of calf terminal transferase competed with only the Mr = 58,000 peptide in the immunoprecipitation reaction. The anti-terminal transferase serum did not precipitate a Mr = 58,000 peptide from translation products of spleen or liver mRNA, but it did precipitate the Mr = 33,000 and 13,000 peptides from products of spleen mRNA and a Mr = 13,000 peptide from products of liver mRNA. In addition, when an affinity-purified antibody to calf terminal transferase was used, only a Mr = 58,000 peptide was immunoprecipitated from the translation products of calf thymus mRNA, and none was immunoprecipitated from spleen or liver mRNA products. This antibody also precipitated a Mr = 58,000 peptide from the cell lysates of calf thymocytes labeled in vitro with [35S]methionine. These results demonstrate that calf terminal transferase is biosynthesized as a Mr = 58,000 peptide.  相似文献   

11.
Antigenic relationships between the low affinity Fc epsilon R present on murine B and T lymphocytes were studied. A rat mAb (B3B4) and two polyclonal antisera produced by immunizing with the murine B lymphocyte Fc epsilon RII were examined for their ability to inhibit binding of IgE to murine B or T lymphocytes, using an IgE-specific rosette assay. One polyclonal antiserum (goat-anti-mouse Fc epsilon R) inhibited binding of IgE to both B and T lymphocytes, whereas another polyclonal antiserum (rabbit-anti-mouse Fc epsilon R) and the rat mAb inhibited the binding of IgE to B lymphocytes but did not influence the binding of IgE to T lymphocytes. When lymphocytes were surface labeled with 125I, 49-kDa and 38-kDa IgE-binding proteins were immunoprecipitated from B lymphocyte lysates by B3B4 and from B and T lymphocyte lysates by the goat antiserum. Taken together, these results suggest that the Fc epsilon R present on murine B and T lymphocytes are structurally related receptors that share some, but not all, epitopes.  相似文献   

12.
Cellular binding of interleukin-1 (IL-1) was tested on monolayers of human thyrocytes in secondary culture, on long-term cultures of human thyrocytes, and on the rat thyroid cell line FRTL-5. The human thyrocytes in secondary culture showed specific binding of human 125I-rIL-1 alpha. Scatchard plots of data obtained at 4 degrees C indicated the presence of a single population of receptors with a Kd of 30 to 170 pM and 2,000 to 6,000 receptors per cell. Incubation at room temperature resulted in internalization of the receptor-ligand complex. Parallel experiments were performed with the IL-1 receptor-positive murine T-cell lines EL-4 and NOB-1. The IL-1 receptors on these cells had Kd values one fifth to one tenth those on human thyroid cells in secondary culture. Both rIL-1 alpha and rIL-1 beta inhibited 125I-rIL-1 alpha binding to human thyrocytes and the murine T cells. In contrast to the cells in secondary culture, there was no specific binding of 125I-rIL-1 alpha to long-term cultivated human thyroid cells or to the FRTL-5 cells. We concluded that recently described differences in the response to IL-1 of different thyroid cell culture systems are most likely caused by differences in expression of IL-1 receptors.  相似文献   

13.
A panel of anti-thyroid hormone receptor (TR) antisera were generated to allow direct assay of the concentrations of the alpha 1 and beta 1 receptor isoforms in nuclear extracts from adult rat liver, kidney, brain and heart, and fetal brain. An antiserum, immunoglobulin G (IgG)-beta 1, raised against amino acid sequence 62-92 of the rat TR-beta 1 specifically precipitated only TR-beta 1 in vitro translation products. A second antiserum, IgG-alpha 1/beta, generated against a sequence that is identical in the ligand binding region of rat TR-alpha 1 and TR-beta isoforms immunoprecipitated both TR-alpha 1 and -beta 1 translation products. These IgG preparations were used to specifically immunoprecipitate thyroid hormone receptor binding activity from nuclear extracts. IgG-beta 1 cleared almost 80%, and the IgG-alpha 1/beta immunoprecipitated nearly all binding from hepatic nuclear extracts. This distribution of TR protein, 80% beta 1 and 20% alpha 1, is the same as previously reported for their respective mRNAs in liver. In heart, kidney, and brain IgG-beta 1 cleared 45, 43, and 28% of total binding, respectively, and IgG-alpha 1/beta cleared all T3 binding activity from these tissues. In agreement with an earlier study, marked variations in specific protein/mRNA ratios were noted among these tissues. Consistent with our earlier report of the presence of only very low levels of TR-beta 1 mRNA in fetal brain, IgG-beta 1 cleared just 5% of binding in this tissue. Studies using an antiserum (IgG-ch) generated against homologous segments of the hinge region in both TR-alpha 1 and -beta 1 yielded results which contrasted sharply with those of IgG-alpha 1/beta. Whereas IgG-ch could also immunoprecipitate virtually all binding from hepatic extracts it cleared only 40-50% of binding from the other tissues, including fetal brain in which TR-alpha 1 accounts for greater than 90% of binding protein. The data suggest the presence of posttranslational modification of the TR-alpha 1 protein in the hinge region, consistent with the presence in this segment of potential phosphorylation sites.  相似文献   

14.
Most adenoviruses bind to the N-terminal immunoglobulin domain D1 of the coxsackievirus and adenovirus receptor via the head part of their fiber proteins. Three receptor molecules can bind per fiber head. We expressed the D1 domain and the adenovirus type 2 fiber head in bacteria and studied binding interactions by surface plasmon resonance measurements. When receptor domains bind adenovirus fiber independently of each other, the dissociation constant is 20-25 nm. However, when adenovirus fiber binds to receptors immobilized on the sensor chip, a situation better mimicking adenovirus binding to receptors on the cell surface, the dissociation constant was around 1 nm. Kinetic analysis shows that this happens via an avidity mechanism; three identical interactions with high on and off rate constants lead to tight binding of one fiber head to three receptor molecules with a very low overall off rate. The avidity mechanism could be used by other viruses that have multimeric adhesion proteins to attach to target cells. It could also be more general to trimeric receptor-ligand interactions, including those involved in intracellular signaling.  相似文献   

15.
Binding specificities and affinities of egf domains for ErbB receptors   总被引:14,自引:0,他引:14  
Jones JT  Akita RW  Sliwkowski MX 《FEBS letters》1999,447(2-3):227-231
ErbB receptor activation is a complex process and is dependent upon the type and number of receptors expressed on a given cell. Previous studies with defined combinations of ErbB receptors expressed in mammalian cells have helped elucidate specific biological responses for many of the recognized gene products that serve as ligands for these receptors. However, no study has examined the binding of these ligands in a defined experimental system. To address this issue, the relative binding affinities of the egf domains of eleven ErbB ligands were measured on six ErbB receptor combinations using a soluble receptor-ligand binding format. The ErbB2/4 heterodimer was shown to bind all ligands tested with moderate to very high affinity. In contrast, ErbB3 showed much more restrictive ligand binding specificity and measurable binding was observed only with heregulin, neuregulin2beta, epiregulin and the synthetic heregulin/egf chimera, biregulin. These studies also revealed that ErbB2 preferentially enhances ligand binding to ErbB3 or ErbB4 and to a lesser degree to ErbB1.  相似文献   

16.
The present method of quantitating soluble asialoglycoprotein (galactosyl) receptor activity relies on the selective precipitation of receptor-ligand complexes to allow separation from free ligand. To provide an alternative to selective precipitation procedures, a simple and rapid method to assay for detergent-solubilized galactosyl receptor activity has been developed which uses permeabilized, fixed cells as a source of immobilized solid-phase receptors. Isolated rat hepatocytes were treated with digitonin to make available the internal as well as the external receptors. The permeable cells were also treated with glutaraldehyde to prevent further protein loss during subsequent exposure to detergents such as Triton X-100. The permeable/fixed cells, which retained about 70% of their total 125I-asialo-orosomucoid (125I-ASOR)-binding activity, with 89% specific binding, were insoluble even in 0.5% Triton X-100 and were easily pelleted. The permeable/fixed cells can be prepared in advance and stored frozen for months. A detergent extract of receptor is mixed with a constant amount of both 125I-ASOR and permeable/fixed cells. Soluble active receptors compete with immobilized receptors on the treated cell for binding of the 125I-ASOR. The assay is reproducible, linear over a broad range of soluble receptor concentration, and can quantitate receptor activity from as few as 10(5) hepatocytes. A modified purification procedure for the rat hepatic galactosyl receptor using this competition assay is also described.  相似文献   

17.
IL-1 and IL-4 are important mediators of B cell growth and differentiation. The cell-surface receptors for these cytokines have recently been cloned and recombinant soluble receptors have been produced that bind their respective ligand. The ability of soluble forms of the murine IL-1R (sIL-1R) and IL-4R (sIL-4R) to inhibit B cell functions in vitro was examined. Proliferation of B cells treated with anti-Ig plus IL-1 or IL-4 was inhibited by the appropriate soluble receptor. sIL-4R also inhibited IL-4-dependent B cell differentiation as measured by: induction of IgG1 and IgE secretion by LPS blasts, down-regulation of IgG3 secretion by LPS blasts, increased Ia expression, and increased Fc epsilon R (CD23) expression. The inhibitory effects of the soluble receptors were found to be highly specific in that sIL-4R had no effect on IL-1-induced B cell activity and sIL-1R had no effect on IL-4 activity, further demonstrating the existence of two independent pathways of B cell activation directed by IL-1 and IL-4.  相似文献   

18.
No prokaryotic expression of integrin alphavbeta3 has been reported so far. We report here the expression of C-terminally truncated alphavbeta3 receptors in E. coli considering the known features required for dimerization and ligand binding. The expressed protein was insoluble despite of the addition of 'solubilizers' to the culture medium. Osmotic stress conditions combined with added exogenous solutes resulted in a small part of soluble receptor. The alphavbeta3 variants were purified from inclusion bodies or from soluble cytoplasmic maltose binding protein fusions. Heterodimerization of the subunits was proved by immunoprecipitation assays. Receptor-ligand binding was found to depend on the concentration. A competition assay with RGD peptides referred to unspecific receptor-ligand interaction. The latter fact was consistent with the finding that soluble receptors did not bind on RGD peptide-coupled sepharose (GRGDSPK sepharose).  相似文献   

19.
Chemokines selectively recruit and activate a variety of cells during inflammation. Interactions between cell surface glycosaminoglycans (GAGs) and chemokines drive the formation of haptotactic or immobilized gradients of chemokines at the site of inflammation, directing this recruitment. Chemokines bind to glycosaminoglycans on human umbilical vein endothelial cells (HUVECs) with affinities in the micromolar range: RANTES > MCP-1 > IL-8 > MIP-1alpha. This binding can be competed with by soluble glycosaminoglycans: heparin, heparin sulfate, chondroitin sulfate, and dermatan sulfate. RANTES binding showed the widest discrimination between glycosaminoglycans (700-fold), whereas MIP-1alpha was the least selective. Almost identical results were obtained in an assay using heparin sulfate beads as the source of immobilized glycosaminoglycan. The binding of chemokines to glycosaminoglycan fragments has a strong length dependence, and optimally requires both N- and O-sulfation. Isothermal titration calorimetry data confirm these results; IL-8 binds heparin fragments with a K(d) of 0.39-2.63 microM, and requires five saccharide units to bind each monomer of chemokine. In membranes from cells expressing the G-protein-coupled chemokine receptors CXCR1, CXCR2, and CCR1, soluble GAGs inhibit the binding of chemokine ligands to their receptors. Consistent with this, heparin and heparin sulfate could inhibit IL-8-induced neutrophil calcium flux. Chemokines can therefore form complexes with both cell surface and soluble GAGs; these interactions have different functions. Soluble GAG chemokines complexes are unable to bind the receptor, resulting in a block of the biological activity. Previously, we have shown that cell surface GAGs present chemokines to the G-protein-coupled receptors, by increasing the local concentration of protein. A model is presented which brings together all of these data. The selectivity in the chemokine-GAG interaction suggests selective disruption of the haptotactic gradient may be an achievable therapeutic approach in inflammatory disease.  相似文献   

20.
The total RNAs were extracted from human, swine, rat, and calf gastric mucosae, and translated in vitro in the presence of radiolabeled amino acids using a wheat germ cell-free system. Upon sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the translation products, a protein band with a molecular weight of about 43,000 was obtained in each case as one of the major products. These products could be specifically immunoprecipitated with a corresponding anti-pepsinogen or anti-chymosin antiserum. Radiosequence analysis of these translation products purified by SDS-polyacrylamide gel electrophoresis showed that each of them is a precursor form, i.e., prepepsinogen or preprochymosin, having an amino-terminal extension peptide (signal sequence) comprising 15 (human and swine) or 16 (rat and calf) amino acid residues. The primary structures of these signal sequences were determined to be as follows: (Sequence: see text). These signal sequences share common characteristics with those of other pre-secretory proteins, i.e., the presence of positive charges in the NH2-terminal region, hydrophobic amino acid clusters in the interior part, and amino acids with short side chains at the site of cleavage by the signal peptidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号