首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

2.
The role of the CD18 complex of leukocyte glycoproteins in adhesion-dependent functions of human leukocytes in vitro has been well documented. A ligand, intercellular adhesion molecule-1 (ICAM-1), for at least one member of the CD18 complex has been identified. This molecule is inducible on many cell types including vascular endothelium and keratinocytes by inflammatory mediators such as IL-1, TNF, and IFN-gamma. ICAM-1 has been shown to mediate, in part, the in vitro adhesion of lymphocytes and neutrophils to endothelial cells expressing ICAM-1. In the present study we have shown that mAb's to the human CD18 complex and to human ICAM-1 cross react with rabbit cells and that both anti-CD18 and anti-CD11b but neither anti-CD11a nor anti-ICAM-1 mAb's inhibit neutrophil migration, an adhesion-dependent function, in vitro. Pretreatment of rabbits with anti-CD18 and anti-ICAM-1 but not anti-CD11a mAb inhibited by greater than 60% neutrophil migration into PMA-induced inflamed rabbit lungs. This effect of anti-ICAM-1 mAb on pulmonary neutrophil influx after PMA injection has important implications. Specifically, that ICAM-1 can function as a ligand for CD18 and can mediate, at least in part, the migration of neutrophils to inflammatory sites.  相似文献   

3.
Human neutrophils exposed to protein-coated polystyrene or cultured endothelial monolayers produce large quantities of H2O2 in response to soluble stimuli that elicit little or no secretion of reactive oxygen species from cells in suspension. To characterize the mechanisms involved in this adherence-dependent respiratory burst, we have investigated the possible role of one integrin known to participate in the adhesion of neutrophils to endothelial cells, CD11b/CD18 (Mac-1). H2O2 production was examined with chemotactic factor-stimulated human and canine neutrophils exposed to protein-coated surfaces and cultured human and canine endothelial cells. The two protein-coated surfaces used were type I collagen-coated glass or plastic, a surface to which neither human nor canine neutrophils adhered, and keyhole limpet hemocyanin (KLH)-coated glass or plastic, a surface to which human and canine neutrophils adhered only after chemotactic stimulation. FMLP-stimulated human neutrophils and platelet activating factor-stimulated canine neutrophils failed to produce detectable H2O2 when in contact with type I collagen, but secreted large amounts of H2O2 when adherent to KLH or endothelial cell monolayers. FMLP-stimulated neutrophils from patients with CD18-deficiency failed to adhere to any of these surfaces and failed to produce H2O2 under these conditions. mAb reactive with CD18 and CD11b were equally effective in markedly inhibiting the adhesion of normal human neutrophils to these surfaces and markedly inhibited the production of H2O2. A mAb reactive with CD18 blocked adhesion of stimulated canine neutrophils, and mAb directed against both CD18 and CD11b blocked H2O2 production by canine neutrophils on KLH and endothelium. A nonbinding mAb and a mAb reactive with CD11a did not inhibit H2O2 production of human cells on KLH or endothelial monolayers, and nonbinding and binding control mAb did not inhibit H2O2 production by canine neutrophils. These results indicate that Mac-1 (CD11b/CD18) can mediate adhesion-dependent H2O2 production by human and canine neutrophils exposed to chemotactic factors.  相似文献   

4.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

5.
We have compared the adhesion of 51Cr-labeled eosinophils and neutrophils to cultured human umbilical vein endothelial cell (EC) monolayers that have been stimulated with IL-1, TNF, or LPS. Each agent stimulated the adhesion to EC of both eosinophils and neutrophils in a similar dose- and time-dependent manner. F(ab')2 fragments of mAb 1.2B6 (anti-endothelial leukocyte adhesion molecule (ELAM)-1) and mAb 6.5B5 (anti-intercellular adhesion molecule (ICAM)-1) each inhibited partially, and to a similar extent, eosinophil and neutrophil adhesion to EC monolayers prestimulated with TNF (10 ng/ml) for 6 h. Greater inhibition of both eosinophil and neutrophil adhesion was achieved by combining the effects of mAb 1.2B6 with either mAb 6.5B5 or mAb TS1/18 (anti-CD18). These observations indicate that both ELAM-1 and ICAM-1 are involved in the adhesion of eosinophils and neutrophils to EC stimulated with TNF. In order to determine whether these molecules are expressed in vivo during allergen-induced late phase allergic responses in the skin, human skin biopsies were examined at 6 h after Ag or saline challenge with the use of an alkaline phosphatase-staining technique. Both ELAM-1 and ICAM-1 were expressed with greater intensities in Ag-challenged biopsies, suggesting that these molecules may be involved in granulocyte recruitment in vivo. The similarities we have established between mechanisms of eosinophil and neutrophil adhesion to cytokine-stimulated EC suggests that factors other than differential leukocyte-EC adhesion may be responsible for the selective accumulation of eosinophils at sites of allergic inflammation.  相似文献   

6.
The roles of beta 2 integrin molecules in neutrophil accumulation and tissue injury have been examined by the use of antibodies that are reactive with human CD11b and CD18 and cross-react with the homologous epitopes on rat neutrophils. Adherence to rat pulmonary artery endothelial cells by human neutrophils and endothelial cell killing by phorbol ester-activated human neutrophils required CD11b, CD11c, and CD18. Companion adherence studies between rat neutrophils and endothelial cells revealed a requirement for both CD11b and CD18. Neither anti-CD11b nor anti-CD18 depressed in vitro responses (O2- generation and chemotactic migration) of rat neutrophils. The accumulation of neutrophils in glycogen-induced peritoneal exudates was diminished substantially in rats treated with either anti-CD18 or anti-CD11b. In oxidant-mediated acute lung injury induced by rapid intravascular infusion of cobra venom factor, treatment of rats with either anti-CD18 or anti-CD11b significantly attenuated injury as assessed by increases in vascular permeability and hemorrhage. These protective effects correlated morphologically with diminished adhesion of neutrophils to interstitial intrapulmonary capillary endothelial cells. In studies of immune complex (BSA-anti-BSA)-induced alveolitis and dermal vasculitis, anti-CD18 had protective effects at all doses of anti-BSA employed. The protective effects of anti-CD18 correlated with diminished neutrophil accumulation in tissues at lower doses of anti-BSA. Although anti-CD11b was not effective under the same experimental conditions, intratracheal administration of this antibody conveyed protection against immune complex-induced lung injury, suggesting that both CD11b and CD18 are required for the full expression of injury. The current studies also demonstrated that when surface-bound IgG immune complexes were treated with fresh rat serum, the increment in O2- and TNF alpha generated by alveolar macrophages was suppressed by anti-CD18, but not by anti-CD11b, suggesting a heretofore unrecognized role for CD18 in the O2- and TNF-alpha responses of alveolar macrophages. Thus, neutrophil beta 2 integrins play a requisite role for the full expression of complement-dependent and oxygen radical-mediated injury of the lung and dermal vasculature.  相似文献   

7.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

8.
IL-1 beta promotes adhesiveness in human umbilical vein endothelial cells (HuVEC) for eosinophils through expression of adhesion molecules including intercellular adhesion molecules-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). Using an in vitro endothelial monolayer system, we examined whether IL-1 beta or TNF-alpha can promote eosinophil transendothelial migration. We also evaluated the contributions of ICAM-1, E-selectin, VCAM-1, leukocyte adhesion complex (CD11/18), and very late Ag-4 (CD11b/18) (VLA-4) in this process using blocking mAb, and determined the changes in expression of CD11b and L-selectin on eosinophils that had undergone transmigration. IL-1 beta and TNF-alpha treatment of HuVEC (4 h, 5 ng/ml) induced significant transendothelial migration of eosinophils (a 4.1 +/- 0.4-fold (IL-1 beta) and 2.0 +/- 0.9-fold (TNF-alpha) increase from the spontaneous value of 3.2 +/- 0.3%). Increased CD11b expression and shedding of L-selectin were observed on eosinophils following IL-1 beta-induced eosinophil transendothelial migration. Studies with mAb revealed that blockade of either ICAM-1 or CD11/18 inhibited transmigration, while antibodies against VCAM-1 and VLA-4 had no inhibitory effect. Among antibodies which block beta 2 integrins, anti-CD18 mAb had the best inhibitory effect (88% inhibition). The combined inhibitory effect of anti-CD11a mAb and anti-CD11b mAb was roughly equal to that of anti-CD18, although anti-CD11a (31% inhibition) and anti-CD11b (52% inhibition) were less effective individually. Anti-ICAM-1 by itself inhibited IL-1 beta-induced eosinophil transendothelial migration (24% inhibition) whereas neither anti-E-selectin nor anti-VCAM-1 were effective inhibitors. Interestingly, the combination of anti-E-selectin and anti-VCAM-1 with anti-ICAM-1 inhibited IL-1 beta-induced eosinophil transendothelial migration significantly better (53% inhibition) than anti-ICAM-1 alone. These results suggest that although the initial attachment of eosinophils to IL-1 beta-activated endothelial cells involves VCAM-1, E-selectin, and ICAM-1, the subsequent transendothelial migration process relies heavily on ICAM-1 and CD11/18. Finally, the changes that eosinophils have been observed to undergo during infiltration in vivo, namely increased expression of CD11/18 and shedding of L-selectin, appear to take place as a direct result of the interaction between eosinophils and endothelial cells.  相似文献   

9.
Accumulating evidence suggests that enhanced peroxynitrite (ONOO-) formation occurs during inflammation. We have studied the impact and the mechanisms of ONOO- action on expression of adhesion molecules on human neutrophils and coronary artery endothelial cells (HCAEC) and binding of neutrophils to HCAEC. Addition of ONOO- (0.1 to 200 5M) to isolated neutrophils resulted in a concentration-dependent down-regulation of L-selectin expression, and up-regulation of CD11b/CD18 expression. ONOO- stimulation of Erk activity was accompanied by activation of Ras, Raf-1 and MEK (mitogen-activated protein kinase kinase), and was sensitive to the MEK inhibitor PD 98059. We have observed a tight association between Erk activation and changes in CD11b/CD18 expression. ONOO- also evoked activation of neutrophil p38 MAPK. Neither ONOO--induced up-regulation of CD11b/CD18 expression nor Erk activation was affected by SB 203580, a selective inhibitor of p38 MAPK. ONOO- by itself had little effect on expression of ICAM-1 and E-selectin on HCAEC, whereas it markedly enhanced attachment of neutrophils to lipopolysaccharide-activated HCAEC only when it was added together with neutrophils. Increases in neutrophil adhesion evoked by ONOO- were blocked by an anti-CD18 monoclonal antibody. These data suggest that ONOO- activates Erk in neutrophils via the Ras/Raf-1/MEK signal transduction pathway, leading to up-regulation of surface expression of CD11b/CD18 and consequently to increased neutrophil adhesion to endothelial cells.  相似文献   

10.
CD157 is a GPI-anchored cell surface glycoprotein expressed by human peripheral blood neutrophils. Cross-linking of CD157 induces intracellular Ca2+ mobilization and re-shaping in neutrophils, thus regulating their adhesive and migratory properties. Results obtained by immunolocalization and confocal microscopy indicate that CD157 lies in close proximity to the CD11b/CD18 complex which is strongly expressed on the activated neutrophil cell membrane where it plays a predominant role in adhesion. This study analyses the physical association between CD157 and CD18 in human neutrophils by co-immunoprecipitation experiments. The anti-CD157 monoclonal antibody RF3 co-precipitates CD18, and the anti-CD18 antibody TS1/18 co-precipitates CD157 from human neutrophil lysates. These results confirm that CD157 physically interacts with CD11b/CD18 complex in human neutrophils.  相似文献   

11.
Neutrophil inhibitory factor (NIF), a 41-kD glycoprotein isolated from the canine hookworm, inhibits CD11b/CD18-dependent neutrophil adhesion by binding to CD11b. We studied the effects of NIF on neutrophil-dependent endothelial cell injury using bovine pulmonary microvessel endothelial cells grown on microporous filters. Endothelial injury was determined as an increase in the transendothelial 125I-albumin clearance rate (a measure of transendothelial permeability). Layering of neutrophils on the endothelial cell monolayer (ratio of 10 neutrophils: 1 endothelial cell) followed by activation of neutrophils with 500 nM of phorbol 12-myristate 13-acetate (PMA) increased transendothelial permeability of albumin by 3- to 4-fold over control monolayers. Pretreatment of neutrophils with NIF at concentrations of 100 nM and above prevented the increased permeability. Pretreatment of neutrophils with the anti-CD18 monoclonal antibody (mAb) IB4 similarly prevented the increase of permeability. Pretreatment of neutrophils with OKM-1, a control isotype-matched mAb directed against an irrelevant epitope on CD11b mAb, did not affect the neutrophil-dependent increase in permeability. NIF reduced the adhesion of neutrophils at concentrations of ≥100 nM and this effect was abolished by an anti-NIF polyclonal Ab. However, NIF did not prevent the generation of superoxide anions following PMA-induced activation of neutrophils layered on endothelial cell. These findings indicate that NIF inhibits the neutrophil-dependent endothelial injury by preventing CD11b/CD18-mediated neutrophil adhesion, but without altering the oxidant generating capacity of neutrophils interacting with the endothelial cell monolayer. J. Cell. Physiol. 171:212–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

13.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

14.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

15.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

16.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

17.
Murine anti-CD14 mAb which recognize different CD14 epitopes induced marked homotypic adhesion of normal human monocytes. Induction of aggregation by anti-CD14 mAb required Mg2+, occurred at an optimal temperature of 37 degrees C, but not at 4 degrees C, and exhibited a kinetics which differed from adhesion triggered by IFN-gamma and anti-CD43 mAb. Monocyte adhesion induced by anti-CD14 mAb required neither Fcy gamma R engagement nor cross-linking of CD14, because adhesion was induced by F(ab)'2 fragments, as well as by monovalent F(ab) fragments of anti-CD14 mAb. mAb to CD11a, CD18, and intercellular adhesion molecule-1 (ICAM-1), but not antibodies to CD11b and CD11c, inhibited monocyte adhesion induced by CD14 engagement. These results indicate that CD14-dependent adhesion is mediated by lymphocyte function-associated Ag-1/ICAM-1 interactions. This was confirmed by the absence of aggregation in anti-CD14-stimulated cells from a patient with leukocyte adhesion deficiency. Monocyte adhesion upon CD14 engagement was blocked by an inhibitor of protein kinases, sphingosine. This suggests that protein kinases play a role in the intracellular signaling pathway(s) which couple CD14 to lymphocyte function-associated Ag-1/ICAM-1.  相似文献   

18.
The role of L-selectin (LAM-1) as a regulator of leukocyte adhesion to kidney microvascular glomerular endothelial cells was assessed in vitro by using L-selectin-directed mAb and an L-selectin cDNA-transfected cell line. The initial attachment of neutrophils, monocytes, and lymphocytes to TNF-activated bovine glomerular endothelial cells was significantly inhibited by the anti-LAM1-3 mAb. Under static conditions, anti-LAM1-3 mAb inhibited neutrophil adhesion by 15 +/- 5%, whereas the anti-LAM1-10 mAb, directed against a functionally silent epitope of L-selectin, was without effect. The binding of a CD18 mAb inhibited adhesion by 47 +/- 6%. In contrast, when the assays were carried out under nonstatic conditions or at 4 degrees C, the anti-LAM1-3 mAb generated significantly greater inhibition (approximately 60%). CD18-dependent adhesion was minimal (approximately 10%) under these conditions. TNF-activated glomerular endothelial cells also supported adhesion of a mouse pre-B cell line transfected with L-selectin cDNA, but not wild-type cells. This process was also inhibited by the anti-LAM1-3 mAb. Leukocyte adhesion to unstimulated endothelial cells was independent of L-selectin, but, after TNF stimulation, L-selectin-mediated adhesion was observed at 4 h, with maximal induction persisting for 24 to 48 h. Leukocyte adhesion was not observed if glomerular endothelial cells were exposed to TNF in the presence of RNA or protein synthesis inhibitors. Leukocyte attachment to TNF-activated glomerular endothelial cells was also partially inhibited by treatment of the cells with mannose-6-phosphate or phosphomannan monoester, a soluble complex carbohydrate, or by prior treatment of glomerular endothelial cells with neuraminidase, suggesting that the glomerular endothelial cell ligand shares functional characteristics with those expressed by lymph node and large vessel endothelial cells. These data suggest that TNF activation induced the biosynthesis and surface expression of a ligand(s) for L-selectin on glomerular endothelial cells, which supports neutrophil, monocyte, and lymphocyte attachment under nonstatic conditions.  相似文献   

19.
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.  相似文献   

20.
The systemic adoptive transfer of activated T cells, derived from tumor-draining lymph nodes (LNs), mediates the regression of established tumors. In this study, the requirement of cell adhesion molecules, CD11a/CD18 (LFA-1), CD54 (ICAM-1), CD49d/CD29 (VLA-4), and CD106 (VCAM-1), for T cell infiltration into tumors and antitumor function was investigated. Administration of anti-CD11a mAb completely abrogated the efficacy of adoptive immunotherapy for both intracranial and pulmonary metastatic MCA 205 fibrosarcomas. In contrast, adoptive immunotherapy was effective in animals treated with anti-CD49d mAb, anti-CD106 mAb, anti-CD54 mAb, or in CD54 knockout recipients. Trafficking of transferred cells to the intracranial tumor was not affected by any of the mAb. However, the tumor-specific secretion of IFN-gamma by activated LN T cells was suppressed by anti-CD11a mAb or anti-CD54 mAb. To account for the different effects of CD11a and CD54 blockade in vivo, an additional CD11a/CD18 ligand, CD102 (ICAM-2), was demonstrated on tumor-associated macrophages but not on tumor cells. These results show that CD11a mediates a critical function in interactions between effector T cells, tumor cells, and host accessory cells in situ leading to tumor regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号