首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quenching of tryptophan fluorescence by brominated phospholipid   总被引:7,自引:0,他引:7  
E J Bolen  P W Holloway 《Biochemistry》1990,29(41):9638-9643
Bromolipids [1-palmitoyl-2-(dibromostearoyl)phosphatidylcholine] with bromines at the 4,5-, 6,7-, 9,10-, 11,12-, and 15,16-positions were used to examine the fluorescence quenching of a synthetic, membrane-spanning peptide (Lys2-Gly-Leu8-Trp-Leu8-Lys-Ala-amide) incorporated into both small and large unilamellar vesicles. The peptide-lipid vesicles were analyzed to show that at least 75% of the peptide was in a transbilayer configuration, placing the single tryptophan in its predicted place in the center of the bilayer. Quenching profiles of the peptide in bromolipid showed maximal (90%) quenching by the 15,16-bromolipid, indicating that the bromolipids can accurately locate the position of a tryptophan in the bilayer. The quenching by the other bromolipids decreased with an r6 dependence and an apparent R0 of 9 A. In addition, indole in methanolic solution was subjected to quenching by a variety of mono- and dibrominated hydrocarbons. The quenching was analyzed, by using a modified Stern-Volmer equation, and found to be greatly dependent upon the number and positioning of the bromines. Monobromobutanes were found to have a quenching efficiency of only 7% while dibromobutanes, with bromines on adjacent carbon atoms, had efficiencies of over 80%. In addition, the dibromobutanes exhibited significant "static" quenching whereas the monobrominated butanes did not. These data suggest that the bromolipids are more appropriately defined as short-range quenchers rather than strictly contact quenchers.  相似文献   

2.
Iodide is an efficient quencher of antithrombin III intrinsic tryptophan fluorescence. The quenching pattern indicates that about 60% of the tryptophyl fluorescence originates from exposed residues in the multitryptophan-containing protein. In denaturing media all of the tryptophyls are solvent-exposed. The binding of heparin to antithrombin III influences the number of solvent-exposed tryptophan residues. By studying the dependence of the quenching on pH, information regarding the presence of charged residues adjacent to tryptophyls was obtained.  相似文献   

3.
It has been suggested that the human red cell anion transport protein, band 3, is the site not only of the cation leak induced in human red cells by treatment with the sulfhydryl reagent pCMBS (p-chloromercuribenzene sulfonate) but is also the site for the inhibition of water flux induced by the same reagent. Our experiments indicate that N-ethylmaleimide, a sulfhydryl reagent that does not inhibit water transport, also does not induce a cation leak. We have found that the profile of inhibition of water transport by mercurial sulfhydryl reagents is closely mirrored by the effect of these same reagents on the induction of the cation leak. In order to determine whether these effects are caused by band 3 we have reconstituted phosphatidylcholine vesicles containing only purified band 3. Control experiments indicate that these band 3 vesicles do not contain (Na+ + K+)-ATPase as measured by ATP dephosphorylation. pCMBS treatment caused a significant increase in the cation leak in this preparation, consistent with the view that the pCMBS-induced cation leak in whole red cells is mediated by band 3.  相似文献   

4.
The GH4C1 strain of hormone-producing rat pituitary cells has specific receptors for the tripeptide thyrotropin-releasing hormone (TRH). Membranes prepared from GH4C1 cells show intrinsic tryptophan fluorescence which was quenched by low concentrations (10–100 nM) of TRH and Nτ-methyl TRH but not by biologically inactive analogs of TRH. Membranes from GH4C1 cells were subjected to thermal denaturation. A conformational transition was noted above 40°C and an irreversible denaturation was observed at 52°C. TRH-induced quenching of intrinsic fluorescence was lost completely in membranes previously incubated for 10 min at 30°C while loss of [3H]-TRH binding was only about 20% at this temperature. Collisional quenching by iodide revealed that about 38% of the tryptophanyl residues in GH4C1 membranes were exposed to solvent. Quenching by TRH occurred with a shift in wavelength maximum from 336 to 342 nm suggesting that few of the tryptophanyl residues quenched by the tripeptide are totally exposed. Membranes prepared from cells preincubated with 20 nM TRH for 48 h, in which TRH receptors were decreased to 30% of control values, showed no quenching of tryptophan fluorescence in response to freshly added TRH. We conclude that the TRH-receptor interaction in GH4C1 cells is associated with a change in membrane conformation that can be measured by differential spectrofluorometry of intrinsic tryptophan fluorescence.  相似文献   

5.
1. The quenching by ubiquinone (Q) of the intrinsic fluorescence of tryptophan residues within ubiquinol--cytochrome-c reductase (complex III) has been exploited to provide direct information on the interaction between these two components of the mitochondrial respiratory chain. 2. The fluorescence quenching data have been corrected for inner filter effects and interpreted using the classical Stern-Volmer and modified Stern-Volmer plots. The latter of these plots allows computation of both the dissociation constant (Kd) of complex formation between ubiquinone and complex III, and the percentage of fluorophores accessible to quenching. 3. It is found that different Q homologues bind to complex III with different affinities depending upon the length of the isoprenoid chain: 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone, an analogue of Q2, exhibits the same Kd as Q2. Furthermore, the accessibility of fluorophores to quenching was lower for Q1 than for the other quinones tested. 4. The binding affinity of Q2 to complex III depends upon the redox state of the enzyme. 5. Addition of the complex III inhibitor, antimycin, has very little effect on the binding affinity or on the accessibility of fluorophores to the quencher. 6. Addition of the inhibitor myxothiazol has a similar effect to reducing complex III with ascorbate. 7. Reconstitution of complex III into asolectin lipid vesicles gives similar qualitative results to the enzyme in solution regarding both the redox state and the addition of inhibitors.  相似文献   

6.
The GH4C1 strain of hormone-producing rat pituitary cells has specific receptors for the tripeptide thyrotropin-releasing hormone (TRH). Membranes prepared from GH4C1 cells show intrinsic tryptophan fluorescence which was quenched by low concentrations (10--100 nM) of TRH and Ntau-methyl TRH but not by biologically inactive analogs of TRH. Membranes from GH4C1 cells were subjected to thermal denaturation. A conformational transition was noted above 40 degrees C and an irreversible denaturation was observed at 52 degrees C. TRH-induced quenching of intrinsic fluorescence was lost completely in membranes previously incubated for 10 min at 30 degrees C while loss of [3H]-TRH binding was only about 20% at this temperature. Collisional quenching by iodide revealed that about 38% of the tryptophanyl residues in GH4C1 membranes were exposed to solvent. Quenching by TRH occurred with a shift in wavelength maximum from 336 to 342 nm suggesting that few of the tryptophanyl residues quenched by the tripeptide are totally exposed. Membranes prepared from cells preincubated with 20 nM TRH for 48 h, in which TRH receptors were decreased to 30% of control values, showed no quenching of tryptophan fluorescence in response to freshly added TRH. We conclude that the TRH-receptor interaction in GH4C1 cells is associated with a change in membrane conformation that can be measured by differential spectrofluorometry of intrinsic tryptophan fluorescence.  相似文献   

7.
The interaction of a number of phenolic compounds, being ‘model fragments’ of humic acids, with cadmium ions was investigated. The fluorescence quenching method was used to determine the complexation constants of these compounds with cadmium ions. It was established that bonding of phenolic compounds by cadmium ions at рН 7 is weak and reaches a maximum value of 15% for interaction with resorcinol. It was demonstrated that modification of humic acids by the mechanoactivation method increases by three times bonding of cadmium ions, which is caused by strengthening the acid properties of carboxyl and hydroxyl groups at the aromatic ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
12.
Fluorescence in red cells following hydrogen peroxide treatment has been attributed to lipid peroxidation of the membrane. The putative relationship between lipid peroxidation and fluorescence was questioned by the finding that BHT and alpha-tocopherol, which are thought to inhibit lipid peroxidation, do not inhibit the fluorescence detected by flow cytometry. Furthermore, lipid peroxidation induced in red cells by the Fe(III)-ADP-ascorbate system did not produce fluorescence. These results require an alternative explanation for the hydrogen peroxide-induced fluorescence. A role for reduced hemoglobin is indicated by the inhibition of fluorescence by pretreatment of cells with CO that binds strongly to ferrohemoglobin and nitrite that oxidizes ferrohemoglobin. Our earlier studies have shown the formation of fluorescent heme degradation products during the reaction of purified hemoglobin with hydrogen peroxide, which was also inhibited by CO and nitrite pretreatment. The fluorescence produced in red cells after the addition of hydrogen peroxide can, therefore, be attributed to fluorescent heme degradation products.  相似文献   

13.
14.
15.
The quenching of fluorescence of 5-methoxyindole, N-acetyl-L-tryptophanamide and two single tryptophan containing peptides, melittin and mastoparan X, by oxidized dithiothreitol was studied. The slopes of the Stern-Volmer plots for steady-state fluorescence quenching were 133 M-1, 71.2 M-1, 75.5 M-1 and 35.0 M-1 at 21 degrees C and pH 7.0 for 5-methyoxyindole, N-acetyl-L-tryptophanamide, melittin and mastoparan X respectively. Fluorescence lifetimes of indole or tryptophan in these compounds, as determined by multifrequency phase fluorometry, were decreased by 15% or less at concentrations that produced 50% or more quenching of steady-state fluorescence. Thus, quenching of fluorescence by oxidized dithiothreitol for these derivatives of indole appears to be largely static in nature, suggesting a ground-state interaction.  相似文献   

16.
The mechanisms by which Ag+ may quench protein tryptophanyl fluorescence have been studied. A 1:1 Ag+-tryptophan complex was detected spectrophotometrically and shown to have a ka = 6.5 × 103 M?1. The complex was nonfluorescent. Ag+ and NO3? each caused collisional quenching which proceeded at nearly diffusion-controlled rates in a series of indole-containing compounds. Analysis of the rates by means of Stern-Volmer plots and lifetime measurements showed also that charge and the presence of salt influence the quenching rate constants.The fluorescence of nonsulfhydryl proteins was quenched by AgNO3 only in concentrations needed for Stern-Volmer quenching of simple indole model compounds. However, the plots for protein quenching were generally nonlinear, a reflection of the heterogeneity of tryptophanyl residues. AgNO3 quenching increased the polarization of protein fluorescence and decreased the lifetime. Rotational relaxation times were determined from Perrin plots of reciprocal polarization vs fluorescence intensity in the presence of various amounts of AgNO3.The fluorescence of the sulfhydryl proteins ovalbumin, yeast, and equine liver alcohol dehydrogenases was strongly quenched by AgNO3 in parallel with the formation of Ag+-mercaptide bonds. The quenching of fluorescence of sulfhydryl proteins was exhibited even in 8 m urea, thus ruling out conformational change as a major basis for the quenching. It was found that Ag+ mercaptide bond formation was accompanied by development of an ultraviolet absorption band. The reaction of Ag+ with cysteine, for example, could be followed spectrophotometrically. The uv absorption of different silver mercaptides varied with the compound and pH.Since the uv absorption of Ag+-mercaptides extended up to 340 nm, and was also found in Ag+-treated sulfhydryl proteins, energy transfer from excited tryptophans seemed a reasonable basis for the observed fluorescence quenching. This possibility was confirmed by calculation of Förster critical transfer distances for a variety of donor-acceptor (Ag+-mercaptide) pairs.The lifetime of sulfhydryl protein fluorescence was decreased by AgNO3, but the emission spectrum was relatively little affected, in contrast to previously reported quenching by Hg2+. Additional mechanisms of fluorescence alteration by Ag+ in proteins (e.g., “heavy atom” effect, conformational changes, enhancement of sulfhydryl quenching) are also considered.The spectral effects of Ag+ interaction with proteins have the following practical applications:determination of —SH groups; probe of accessibility of binding sites and tryptophan-sulfhydryl distances; determination of rotational relaxation times by Perrin plots of reciprocal polarization vs lifetime; kinetic studies of Ag+ interaction with proteins.  相似文献   

17.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5-4.0 mus duration dye laser flash of varying intensities as an excitation source. The yield (phi) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectoscopy at 515 nm, while the yield phi following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10-12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from phi utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (greater than 10(16) photon . cm-2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1-2 mus after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules. At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse. A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a single-triplet bimolecular rate constant of gammast = 10(-8) cm3 . s-1, the following observations can be accounted for: (1) the rapid initial drop in phi and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   

18.
Quenching of fluorescence occurs when Lactobacillus casei thymidylate synthetase is titrated with fluorodeoxyuridylate in the presence of 1-L-methylenetetrahydrofolate to form a ternary complex. Neither fluorodeoxyuridylate nor 1-L-methylenetetrahydrofolate added singly has any effect on enzyme fluorescence but d-L-methylenetetrahydrofolate alone causes quenching. Thus ternary complex formation and interaction with d-L-methylenetetrahydrofolate alter the environment of tryptophan residues in thymidylate synthetase in a similar manner.  相似文献   

19.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5–4.0 μs duration dye laser flash of varying intensities as an excitation source. The yield (Ф) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectroscopy at 515 nm, while the yield Ф following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10–12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from Ф utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (1016 photon · cm−2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1–2 μs after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules.

At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse.

A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a singlet-triplet bimolecular rate constant of γst = 10−8 cm3 · s−1, the following observations can be accounted for: (1) the rapid initial drop in Ф and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   


20.
The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical characteris-tics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quencher between membrane and water, and the fluorescence quenching constant of protein (Ksv; Kq). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was ob-served in detail by using the ESR technique. The signal of HB" was found to arise from an electron transfer from ex-cited trytophan to HB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号