首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.  相似文献   

2.
Smoking increases indices of free radical-mediated damage of DNA which are potential underlying processes in the pathogenesis of many diseases. In this study, we evaluated whether 8 weeks of green vegetable drink (Angelica keiskei based juice) supplementation to smokers can be protective against lymphocytic DNA damage. Twenty smokers were given 240 ml of commercially available green vegetable drink every day for 8 weeks. The DNA damage was determined using single cell gel electrophoresis (COMET assay) and the damage was quantified by measuring tail length (TL), tail moment (TM), and percent DNA in tail. Eight weeks of green vegetable drink consumption resulted in a significant in lymphocytes DNA damage in all three measurements; TL, TM and % DNA in tail. These results support the hypothesis that green vegetable drink exerts a cancer-protective effect via a decrease in oxidative damage to DNA in humans.  相似文献   

3.
Park YK  Park E  Kim JS  Kang MH 《Mutation research》2003,529(1-2):77-86
Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75 +/- 1.55 microm versus after supplementation: 70.25 +/- 1.31 microm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.  相似文献   

4.
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.  相似文献   

5.
Inadequate intake of the recommended five-a-day fruit and vegetable portions might contribute to increased cardiovascular disease risk. We assessed the effects of dietary intake of a blackcurrant juice drink, rich in vitamin C and polyphenols, on oxidative stress and vascular function. This was a double-blind, placebo-controlled, parallel group study of 66 healthy adults who habitually consume <2 portions of fruit and vegetables per day. Participants were randomly allocated to consume 250 ml of placebo (flavored water) or low or high blackcurrant juice drink four times a day for 6 weeks. Flow-mediated dilation (FMD) and plasma concentrations of F2-isoprostanes and vitamin C were measured. In the high blackcurrant juice drink group FMD increased significantly (5.8±3.1 to 6.9±3.1%, P=0.022) compared with the placebo group (6.0±2.2 to 5.1±2.4%). Plasma vitamin C concentration increased significantly in the low (38.6±17.6 to 49.4±21.0 µmol/L, P<0.001) and high (34.6±20.4 to 73.8±23.3 µmol/L, P<0.001) blackcurrant juice drink groups compared with the placebo group (38.1±21.0 to 29.0±17.6 µmol/L). F2-isoprostane concentrations were significantly lower in the high blackcurrant juice drink group (225±64 pg/ml) compared with the low blackcurrant juice drink (257±69 pg/ml, P=0.002) and placebo group (254±59 pg/ml, P=0.003). At follow-up, changes in plasma vitamin C correlated significantly with changes in FMD (r=0.308, P=0.044). Consumption of blackcurrant juice drink high in vitamin C and polyphenols can decrease oxidative stress and improve vascular health in individuals with habitually low dietary fruit and vegetable intake.  相似文献   

6.
Polyphenolic compounds exert a variety of physiological effects in vitro including antioxidative, immunomodulatory and antigenotoxic effects. In a randomized crossover study in healthy men on a low-polyphenol diet, we determined the effects of 2 polyphenol-rich juices (330 ml/d) supplemented for 2 weeks on bioavailability of polyphenols, markers of antioxidative and immune status, and reduction of DNA damage. Juices provided 236 mg (A) and 226 mg (B) polyphenols with cyanidin glycosides (A) and epigallocatechin gallate (B) as major polyphenolic ingredients. There was no accumulation of plasma polyphenols after two weeks of juice supplementation. In contrast, plasma malondialdehyde decreased with time during juice interventions. Moreover, juice consumption also increased lymphocyte proliferative responsiveness, with no difference between the two juices. Interleukin-2 secretion by activated lymphocytes and the lytic activity of natural killer cells were significantly increased by both juices. Juice intervention had no effect on single DNA strand breaks, but significantly reduced oxidative DNA damage in lymphocytes. A time-delay was observed between the intake of fruit juice and the reduction of oxidative DNA damage and the increase in interleukin-2 secretion. We conclude that consumption of either juice enhanced antioxidant status, reduced oxidative DNA damage and stimulated immune cell functions. However, fruit juice consumption for 2 weeks did not result in elevated plasma polyphenols in subjects after overnight fasting. Further studies should focus on the time-delay between juice intake and changes in measured physiological functions, as well as on active polyphenolic metabolites mediating the observed effects.  相似文献   

7.
《Free radical research》2013,47(5):522-528
Abstract

The effect of antioxidant supplementation on biomarkers of oxidative stress was investigated in a 6-week intervention study in 60 overweight men. The supplement contained a combination of antioxidants aiming to correspond to the antioxidant content found in a diet rich in fruit and vegetables. Placebo, single or double dose of antioxidants was provided to the subjects. Metabolic variables, plasma antioxidants and biomarkers of oxidative stress (lipid peroxidation and DNA damage) were measured. No effect of supplementation on biomarkers of oxidative stress was observed. Both intervention groups showed substantial increases of plasma antioxidants. This study demonstrated that supplementation with a combination of antioxidants did not affect lipid peroxidation and DNA damage in overweight men, despite increased concentrations of plasma antioxidants. The absence of antioxidant supplement effect might possibly be explained by the chosen study group having a normal level of oxidative stress, duration of the intervention and/or doses of antioxidants.  相似文献   

8.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

9.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

10.
Purified repair endonucleases such as Fpg protein, endonuclease III and IV allow a very sensitive quantification of various types of oxidative DNA modifications in mammalian cells. By means of these assays, the numbers of base modifications sensitive to Fpg protein, which include 8-hydroxyguanine (8-oxoG), were determined to be less than 0.3 per 106 bp in several types of untreated cultured mammalian cells and human lymphocytes and less than 10 per 106 bp in mitochondrial DNA from rat and porcine liver. Oxidative 5,6-dihydropyrimidine derivatives sensitive to endonuclease III and sites of base loss sensitive to endonuclease IV or exonuclease III were much less frequent than Fpg-sensitive modifications. Here, we summarize our indications that all Fpg-sensitive modifications are recognized under the assay conditions and that on the other hand there is no artifactual generation of oxidative damage during the analysis. In addition, we show that the steady-state levels of Fpg-sensitive modifications in human lymphocytes and in two mammalian cell lines were higher in proliferating than in resting (confluent) cells. Only some of the Fpg-sensitive base modifications induced by various oxidants are 8-oxoG residues, as demonstrated for the damage under cell-free conditions. The percentage was dependent on the species ultimately responsible for the DNA damage and was approx. 40% in the case of hydroxyl radicals and peroxynitrite, 75% for type II photosensitizers (reacting via singlet oxygen) and only 20-30% in the case of type I photosensitizers such as riboflavin and acridine orange, which are assumed to react directly with the DNA.  相似文献   

11.
Guibourt N  Boiteux S 《Biochimie》2000,82(1):59-64
The biological relevance of oxidative DNA damage has been unveiled by the identification of genes such as fpg of E. coli or OGG1 of Saccharomyces cerevisiae. Both Fpg and Ogg1 proteins are DNA glycosylases/AP lyases that excise 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) from damaged DNA. Although similar, the enzymatic and biological properties of Fpg and Ogg1 proteins are not identical. Furthermore, the Fpg and Ogg1 proteins do not show significant sequence homologies. In this study, we investigated the ability of the Fpg protein of E. coli to complement phenotypes thought to be due to oxidative DNA damage in Saccharomyces cerevisiae. To express Fpg in yeast, the coding sequence of the fpg gene was placed under the control of a strong yeast promoter in the expression vector pCM190 to generate the pFPG240 plasmid. The Ogg1-deficient yeast strain CD138, ogg1::TRP1, was transformed with pFPG240 and the expression of Fpg was measured. Expression of Fpg in yeast harboring pFPG240 was revealed by efficient release of Me-FapyG and cleavage of 8-OxoG-containing duplexes by cell free protein extracts. The production of the Fpg protein in yeast cells was further demonstrated by immunoblotting analysis using anti-Fpg antibodies. Fpg expression suppresses the spontaneous mutator phenotype of ogg1- yeast for the production of canavanin resistant mutants (CanR) and Lys+ revertants. Fpg expression also restores the capacity of plasmid DNA treated with methylene blue plus visible light (MB-light) to transform the yeast ogg1- rad1- double mutant.  相似文献   

12.
AimsThe aim of this study was to investigate the effect of iron or/and zinc supplementation and termination of this treatment on the antioxidant defence of the male reproductive system and sperm viability in rats.MethodsThe study consisted of 3 stages: I) 4-week adaptation to the diets (C-control or D-iron deficient); II) 4-week iron and/or zinc supplementation (10-times more than in the C diet of iron: CSFe, DSFe; zinc: CSZn, DSZn; or iron and zinc: CSFeZn, DSFeZn; and III) 2-week post-supplementation period (the same diets as during stage I). Parameters of antioxidant status (total antioxidant capacity and SOD, GPx, and CAT activiy), oxidative damage (lipid and protein peroxidation), and sperm viability were measured.ResultsSimultaneous iron and zinc supplementation compared to iron supplementation (CSFeZn vs CSFe) increased SOD activity in the testes and decreased the level of malondialdehyde in the epididymis after stage II, and increased the percentage of live sperm after stage III. After discontinuation of the iron and zinc supplementation and a return to the control diet, the following was observed a decrease of SOD activity in the testes and GPx activity in the epididymis, and a increase malondialdehyde concentration in prostates. After stage III, in DSFeZn vs DSFe rats, an increase of SOD and CAT activity in the epididymis was found.ConclusionZinc supplementation simultaneous with iron may protect the male reproductive system against oxidative damage induced by high doses of iron and may have a beneficial effect on sperm viability. The effect of this supplementation was observed even two weeks after the termination of the intervention.  相似文献   

13.
DNA damage may be associated with type 2 diabetes mellitus (T2DM) and its complications mainly through oxidative stress. Little is known about DNA repair disturbances potentially contributing to the overall extent of DNA damage in T2DM, which, in turn, may be linked with genomic instability resulting in cancer. To assess whether DNA repair may be perturbed in 2DM we determined: (1) the level of endogenous basal DNA damage, this means damage recognized in the alkaline comet assay (DNA strand breaks and alkali labile sites) as well as endogenous oxidative and alkylative DNA damage (2) the sensitivity to DNA-damaging agents hydrogen peroxide and doxorubicin and the efficacy of removing of DNA damage induced by these agents in peripheral blood lymphocytes of T2DM patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair was evaluated by the alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The levels of basal endogenous and oxidative DNA damage in diabetes patients were higher than in control subjects. There was no difference between the level of alkylative DNA in the patients and the controls. Diabetes patients displayed higher susceptibility to hydrogen peroxide and doxorubicin and decreased efficacy of repairing DNA damage induced by these agents than healthy controls. Our results suggest that type 2 diabetes mellitus may be associated not only with the elevated level of oxidative DNA damage but also with the increased susceptibility to mutagens and the decreased efficacy of DNA repair. These features may contribute to a link between diabetes and cancer and metrics of DNA damage and repair, measured by the comet assay, may be markers of risk of cancer in diabetes.  相似文献   

14.
Bistranded complex DNA damage, i.e., double-strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions, is hypothesized to challenge the repair mechanisms of the cell and consequently the genomic integrity. The oxidative clustered DNA lesions may be persistent and may accumulate in human cancer cells for long times after irradiation. To evaluate the detection and possible accumulation of oxidative clustered DNA lesions in leukemia cells exposed to doses equivalent to those used in radiotherapy, we measured the induction of DSBs and three different types of oxidative clustered DNA lesions in NALM-6 cells, a human acute lymphoblastic leukemia (ALL) pre-B cell line, after exposure to (137)Cs gamma rays. For the detection and measurement of DSBs and oxidative clustered DNA lesions, we used an adaptation of the neutral comet assay (single-cell gel electrophoresis) using E. coli repair enzymes (Endo IV, Fpg and Endo III) as enzymatic probes. We found a linear dose response for the induction of DSBs and oxidative clustered DNA lesions. Clustered DNA lesions were more prevalent than prompt DSBs. For each DSB induced by radiation, approximately 2.5 oxidative clustered DNA lesions were detected. To our knowledge, this is the first study to demonstrate the detection and linear induction of oxidative clustered DNA lesions with radiation dose in an ALL cell line. These results point to the biological significance of clustered DNA lesions.  相似文献   

15.
《Mutation Research Letters》1995,346(4):195-202
The single cell gel test (SCG test or comet assay) was used to study DNA damage in peripheral white blood cells (WBC) of humans after a single bout of exhaustive exercise and the effect of vitamin supplementation. Human subjects were asked to run on a treadmill until exhaustion and blood samples were taken before and 24 h after the run. A clear increase in DNA strand breakage was observed in the 24-h sample of all probands. A short-term application of multivitamin pills or vitamin E (3 × 800 mg) resulted in a significantly smaller increase of DNA effects in WBC of some probands. When the volunteers were given a supplement of vitamin E (1200 mg daily) for 14 days prior to run, exercise-induced DNA damage was clearly reduced in all probands. In four out of five subjects, vitamin supplementation completely prevented the induction of DNA damage after exhaustive exercise. Intake of vitamin E for 14 days led to a clear increase in vitamin E serum concentrations. Malondialdehyde (MDA), a marker of lipid peroxidation, was measured in the serum of probands in tests with and without vitamin supplementation for 14 days. MDA concentrations were significantly decreased following vitamin E supplementation but not significantly changed 15 min and 24 h after a run. Our results demonstrate that vitamin E prevents exercise-induced DNA damage and indicate that DNa breakage occurs in WBC after exhaustive exercise as a consequence of oxidative stress.  相似文献   

16.
Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.  相似文献   

17.
GC/MS technique was used to identify endogenous levels of oxidatively modified DNA bases. To avoid possible artefact formation we used Fpg and Endo III endonucleases instead of acid hydrolysis to liberate the base products from unmodified DNA samples. Several different DNA preparations were used: (i) commercial calf thymus DNA, (ii) DNA isolated from rat liver, (iii) DNA isolated from human lymphocytes and (iv) nuclei isolated from rat liver. In all DNA samples used in our assays the most efficiently removed bases by Fpg protein are FapyG and FapyA although 8-oxoG was also detected in all preparations. The amount of 8-oxoG in human lymphocytes and in rat liver DNA was 3 and 2 per 10(7)bases, respectively. It is reasonable to postulate that the presented method is one of the techniques which should be used to reveal the enigma of endogenous, oxidative DNA damage.  相似文献   

18.
GC/MS technique was used to identify endogenous levels of oxidatively modified DNA bases. To avoid possible artefact formation we used Fpg and Endo III endonucleases instead of acid hydrolysis to liberate the base products from unmodified DNA samples. Several different DNA preparations were used: (i) commercial calf thymus DNA, (ii) DNA isolated from rat liver, (iii) DNA isolated from human lymphocytes and (iv) nuclei isolated from rat liver. In all DNA samples used in our assays the most efficiently removed bases by Fpg protein are FapyG and FapyA although 8-oxoG was also detected in all preparations. The amount of 8-oxoG in human lymphocytes and in rat liver DNA was 3 and 2 per 107 bases, respectively. It is reasonable to postulate that the presented method is one of the techniques which should be used to reveal the enigma of endogenous, oxidative DNA damage.  相似文献   

19.
The kinetics of excision of damaged purine bases from oxidatively damaged DNA by Escherichia coli Fpg protein were investigated. DNA substrates, prepared by treatment with H2O2/Fe(III)-EDTA or by gamma-irradiation under N2O or air, were incubated with Fpg protein, followed by precipitation of DNA. Precipitated DNA and supernatant fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. Kinetic studies revealed efficient excision of 8-hydroxyguanine (8-OH-Gua), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde). Thirteen other modified bases in the oxidized DNA substrates, including 5-hydroxycytosine and 5-hydroxyuracil, were not excised. Excision was measured as a function of enzyme concentration, substrate concentration, time and temperature. The rate of release of modified purine bases from the three damaged DNA substrates varied significantly even though each DNA substrate contained similar levels of oxidative damage. Specificity constants (kcat/KM) for the excision reaction indicated similar preferences of Fpg protein for excision of 8-OH-Gua, FapyGua and FapyAde from each DNA substrate. These findings suggest that, in addition to 8-OH-Gua, FapyGua and FapyAde may be primary substrates for this enzyme in cells.  相似文献   

20.
A DNA repair enzyme has recently been isolated from the ionizing radiation-resistant bacterium Deinococcus radiodurans [Bauche, C., and Laval, J. (1999) J. Bacteriol. 181, 262-269]. This enzyme is a homologue of the Fpg protein of Escherichia coli. We investigated the substrate specificity of this enzyme for products of oxidative DNA base damage using gas chromatography/isotope-dilution mass spectrometry and DNA substrates, which were either gamma-irradiated or treated with H(2)O(2)/Fe(III)-EDTA/ascorbic acid. Excision of purine lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), 4,6-diamino-5-formamidopyrimidine (FapyAde), and 8-hydroxyguanine (8-OH-Gua) was observed among 17 lesions detected in damaged DNA substrates. The extent of excision was determined as a function of enzyme concentration, time, and substrate concentration. FapyGua and FapyAde were excised with similar specificities from three DNA substrates, whereas 8-OH-Gua was the least preferred lesion. The results show that D. radiodurans Fpg protein and its homologue E. coli Fpg protein excise the same modified DNA bases, but the excision rates of these enzymes are significantly different. Formamidopyrimidines are preferred substrates of D. radiodurans Fpg protein over 8-OH-Gua, whereas E. coli Fpg protein excises these three lesions with similar efficiencies from various DNA substrates. Substrate specificities of these enzymes were also compared with that of Saccharomyces cerevisiae Ogg1 protein, which excises FapyGua and 8-OH-Gua, but not FapyAde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号