首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventeen fit women ran to exhaustion (14 +/- 4 min) at a constant speed and grade, reaching 95 +/- 3% of maximal O(2) consumption. Pre- and postexercise lung function, including airway resistance [total respiratory resistance (Rrs)] across a range of oscillation frequencies, was measured, and, on a separate day, airway reactivity was assessed via methacholine challenge. Arterial O(2) saturation decreased from 97.6 +/- 0.5% at rest to 95.1 +/- 1.9% at 1 min and to 92.5 +/- 2.6% at exhaustion. Alveolar-arterial O(2) difference (A-aDO(2)) widened to 27 +/- 7 Torr after 1 min and was maintained at this level until exhaustion. Arterial PO(2) (Pa(O(2))) fell to 80 +/- 8 Torr at 1 min and then increased to 86 +/- 9 Torr at exhaustion. This increase in Pa(O(2)) over the exercise duration occurred due to a hyperventilation-induced increase in alveolar PO(2) in the presence of a constant A-aDO(2). Arterial O(2) saturation fell with time because of increasing temperature (+2.6 +/- 0.5 degrees C) and progressive metabolic acidosis (arterial pH: 7.39 +/- 0.04 at 1 min to 7.26 +/- 0.07 at exhaustion). Plasma histamine increased throughout exercise but was inversely correlated with the fall in Pa(O(2)) at end exercise. Neither pre- nor postexercise Rrs, frequency dependence of Rrs, nor diffusing capacity for CO correlated with the exercise A-aDO(2) or Pa(O(2)). Although several subjects had a positive or borderline hyperresponsiveness to methacholine, this reactivity did not correlate with exercise-induced changes in Rrs or exercise-induced arterial hypoxemia. In conclusion, regardless of the degree of exercise-induced arterial hypoxemia at the onset of high-intensity exercise, prolonging exercise to exhaustion had no further deleterious effects on A-aDO(2), and the degree of gas exchange impairment was not related to individual differences in small or large airway function or reactivity.  相似文献   

2.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

3.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

4.
Exercise-induced arterial hypoxemia (EIAH) has been reported in male athletes, particularly during fast-increment treadmill exercise protocols. Recent reports suggest a higher incidence in women. We hypothesized that 1-min incremental (fast) running (R) protocols would result in a lower arterial PO(2) (Pa(O(2))) than 5-min increment protocols (slow) or cycling exercise (C) and that women would experience greater EIAH than previously reported for men. Arterial blood gases, cardiac output, and metabolic data were obtained in 17 active women [mean maximal O(2) uptake (VO(2 max)) = 51 ml. kg(-1). min(-1)]. They were studied in random order (C or R), with a fast VO(2 max) protocol. After recovery, the women performed 5 min of exercise at 30, 60, and 90% of VO(2 max) (slow). One week later, the other exercise mode (R or C) was similarly studied. There were no significant differences in VO(2 max) between R and C. Pulmonary gas exchange was similar at rest, 30%, and 60% of VO(2 max). At 90% of VO(2 max), Pa(O(2)) was lower during R (mean +/- SE = 94 +/- 2 Torr) than during C (105 +/- 2 Torr, P < 0.0001), as was ventilation (85.2 +/- 3.8 vs. 98.2 +/- 4.4 l/min BTPS, P < 0.0001) and cardiac output (19.1 +/- 0.6 vs. 21.1 +/- 1.0 l/min, P < 0.001). Arterial PCO(2) (32.0 +/- 0.5 vs. 30.0 +/- 0.6 Torr, P < 0.001) and alveolar-arterial O(2) difference (A-aDO(2); 22 +/- 2 vs. 16 +/- 2 Torr, P < 0.0001) were greater during R. Pa(O(2)) and A-aDO(2) were similar between slow and fast. Nadir Pa(O(2)) was 相似文献   

5.
Exercise-induced intrapulmonary arteriovenous shunting, as detected by saline contrast echocardiography, has been demonstrated in healthy humans. We have previously suggested that increases in both pulmonary pressures and blood flow associated with exercise are responsible for opening these intrapulmonary arteriovenous pathways. In the present study, we hypothesized that, although cardiac output and pulmonary pressures would be higher in hypoxia, the potent pulmonary vasoconstrictor effect of hypoxia would actually attenuate exercise-induced intrapulmonary shunting. Using saline contrast echocardiography, we examined nine healthy men during incremental (65 W + 30 W/2 min) cycle exercise to exhaustion in normoxia and hypoxia (fraction of inspired O(2) = 0.12). Contrast injections were made into a peripheral vein at rest and during exercise and recovery (3-5 min postexercise) with pulmonary gas exchange measured simultaneously. At rest, no subject demonstrated intrapulmonary shunting in normoxia [arterial Po(2) (Pa(O(2))) = 98 +/- 10 Torr], whereas in hypoxia (Pa(O(2)) = 47 +/- 5 Torr), intrapulmonary shunting developed in 3/9 subjects. During exercise, approximately 90% (8/9) of the subjects shunted during normoxia, whereas all subjects shunted during hypoxia. Four of the nine subjects shunted at a lower workload in hypoxia. Furthermore, all subjects continued to shunt at 3 min, and five subjects shunted at 5 min postexercise in hypoxia. Hypoxia has acute effects by inducing intrapulmonary arteriovenous shunt pathways at rest and during exercise and has long-term effects by maintaining patency of these vessels during recovery. Whether oxygen tension specifically regulates these novel pathways or opens them indirectly via effects on the conventional pulmonary vasculature remains unclear.  相似文献   

6.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

7.
We determined the relations among gas exchange, breathing mechanics, and airway inflammation during moderate- to maximum-intensity exercise in asthmatic subjects. Twenty-one habitually active (48.2 +/- 7.0 ml.kg(-1).min(-1) maximal O2 uptake) mildly to moderately asthmatic subjects (94 +/- 13% predicted forced expiratory volume in 1.0 s) performed treadmill exercise to exhaustion (11.2 +/- 0.15 min) at approximately 90% of maximal O2 uptake. Arterial O2 saturation decreased to < or =94% during the exercise in 8 of 21 subjects, in large part as a result of a decrease in arterial Po2 (PaO2): from 93.0 +/- 7.7 to 79.7 +/- 4.0 Torr. A widened alveolar-to-arterial Po2 difference and the magnitude of the ventilatory response contributed approximately equally to the decrease in PaO2 during exercise. Airflow limitation and airway inflammation at baseline did not correlate with exercise gas exchange, but an exercise-induced increase in sputum histamine levels correlated with exercise Pa(O2) (negatively) and alveolar-to-arterial Po2 difference (positively). Mean pulmonary resistance was high during exercise (3.4 +/- 1.2 cmH2O.l(-1).s) and did not increase throughout exercise. Expiratory flow limitation occurred in 19 of 21 subjects, averaging 43 +/- 35% of tidal volume near end exercise, and end-expiratory lung volume rose progressively to 0.25 +/- 0.47 liter greater than resting end-expiratory lung volume at exhaustion. These mechanical constraints to ventilation contributed to a heterogeneous and frequently insufficient ventilatory response; arterial Pco2 was 30-47 Torr at end exercise. Thus pulmonary gas exchange is impaired during high-intensity exercise in a significant number of habitually active asthmatic subjects because of high airway resistance and, possibly, a deleterious effect of exercise-induced airway inflammation on gas exchange efficiency.  相似文献   

8.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

9.
Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (99mTc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of 99mTc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreased arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. 99mTc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP [k = 7.57 +/- 0.71%/min (SE)] and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of 99mTc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure.  相似文献   

10.
To investigate the effect of intravenous infusions of bradykinin (BK) on the permeability of the hypoxic pulmonary epithelium to small solutes, experiments (n = 7) were performed in yearling sheep with chronic vascular catheters. Sheep were anesthetized, intubated, paralyzed, and ventilated. After establishing stable and normal base-line pulmonary hemodynamics and blood gas tensions, the lungs were insufflated with a submicronic aerosol of technetium-99m-labeled diethylenetriaminepentaacetate (99mTc-DTPA, mol wt = 492). Radioactivity arising from the right hemithorax was measured by an NaI probe with a parallel-holed collimator. The base-line pulmonary clearance rate (k) for 99mTc-DTPA was 0.51 +/- 0.09% (SE)/min, while the sheep were ventilated with a fractional concentration of inspired O2 (FIO2) of 0.5 [arterial partial pressure of O2 (PaO2) = 196 +/- 11.4 (SE) Torr]. Clearance of 99mTc-DTPA was unaffected by hypoxia alone or BK infusions in nonhypoxic lungs. The combination of an intravenous infusion of BK at either 1.2 (n = 3) or 2.4 micrograms . kg-1 . min-1 (n = 4) and alveolar hypoxia [FIO2 = 0.11, PaO2 = 28 +/- 1.6 (SE) Torr] did not affect pulmonary clearance of 99mTc-DTPA [k = 0.43 +/- 0.08% (SE)/min]. In contrast, a 0.05-ml/kg intravenous infusion of oleic acid increased clearance 10-fold in one sheep. During combined hypoxia and BK infusion the pulmonary arterial BK concentration (radioimmunoassay) increased from 0.82 +/- 0.16 (SE) to 7.05 +/- 1.86 ng/ml (P less than 0.001), but the systemic arterial concentrations were unchanged [0.67 +/- 0.19 (SE) to 0.66 +/- 0.09 ng/ml].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

12.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

13.
Although evidence for muscle O(2) diffusion limitation of maximal O(2) uptake has been found in the intact organism and isolated muscle, its relationship to diffusion distance has not been examined. Thus we studied six sets of three purpose-bred littermate dogs (aged 10-12 mo), with 1 dog per litter allocated to each of three groups: control (C), exercise trained for 8 wk (T), or left leg immobilized for 3 wk (I). The left gastrocnemius muscle from each animal was surgically isolated, pump-perfused, and electrically stimulated to peak O(2) uptake at three randomly applied levels of arterial oxygenation [normoxia, arterial PO(2) (Pa(O(2))) 77 +/- 2 (SE) Torr; moderate hypoxia, Pa(O(2)): 33 +/- 1 Torr; and severe hypoxia, Pa(O(2)): 22 +/- 1 Torr]. O(2) delivery (ml. min(-1). 100 g(-1)) was kept constant among groups for each level of oxygenation, with O(2) delivery decreasing with decreasing Pa(O(2)). O(2) extraction (%) was lower in I than T or C for each condition, but calculated muscle O(2) diffusing capacity (Dmus(O(2))) per 100 grams of muscle was not different among groups. After the experiment, the muscle was perfusion fixed in situ, and a sample from the midbelly was processed for microscopy. Immobilized muscle showed a 45% reduction of muscle fiber cross-sectional area (P < 0.05), and a resulting 59% increase in capillary density (P < 0.05) but minimal reduction in capillary-to-fiber ratio (not significant). In contrast, capillarity was not significantly different in T vs. C muscle. The results show that a dramatically increased capillary density (and reduced diffusion distance) after short-term immobilization does not improve Dmus(O(2)) in heavily working skeletal muscle.  相似文献   

14.
Twenty-one subjects with asthma underwent treadmill exercise to exhaustion at a workload that elicited approximately 90% of each subject's maximal O2 uptake (EX1). After EX1, 12 subjects experienced significant exercise-induced bronchospasm [(EIB+), %decrease in forced expiratory volume in 1.0 s = -24.0 +/- 11.5%; pulmonary resistance at rest vs. postexercise = 3.2 +/- 1.5 vs. 8.1 +/- 4.5 cmH2O.l(-1).s(-1)] and nine did not (EIB-). The alveolar-to-arterial Po2 difference (A-aDo2) was widened from rest (9.1 +/- 6.7 Torr) to 23.1 +/- 10.4 and 18.1 +/- 9.1 Torr at 35 min after EX1 in subjects with and without EIB, respectively (P < 0.05). Arterial Po2 (PaO2) was reduced in both groups during recovery (EIB+, -16.0 +/- -13.0 Torr vs. baseline; EIB-, -11.0 +/- 9.4 Torr vs. baseline, P < or = 0.05). Forty minutes after EX1, a second exercise bout was completed at maximal O2 uptake. During the second exercise bout, pulmonary resistance decreased to baseline levels in the EIB+ group and the A-aDo2 and PaO2 returned to match the values seen during EX1 in both groups. Sputum histamine (34.6 +/- 25.9 vs. 61.2 +/- 42.0 ng/ml, pre- vs. postexercise) and urinary 9alpha,11beta-prostaglandin F2 (74.5 +/- 38.6 vs. 164.6 +/- 84.2 ng/mmol creatinine, pre- vs. postexercise) were increased after exercise only in the EIB+ group (P < 0.05), and postexercise sputum histamine was significantly correlated with the exercise PaO2 and A-aDo2 in the EIB+ subjects. Thus exercise causes gas-exchange impairment during the postexercise period in asthmatic subjects independent of decreases in forced expiratory flow rates after the exercise; however, a subsequent exercise bout normalizes this impairment secondary in part to a fast acting, robust exercise-induced bronchodilatory response.  相似文献   

15.
AIMS: This study was designed to explore the plasma oxytocin (OT) response to exercise until exhaustion in trained male cyclists. METHODS: Twelve professional cyclists (EXP group; age: 26 +/- 2 years; VO(2)max: 4,804 +/- 549 ml) and 10 sedentary young men (CONT group; age: 23 +/- 2 years; VO(2)max: 3,146 +/- 602 ml) performed a maximal incremental exercise test on a cycle ergometer. Evaluation was made of the oxygen uptake (VO(2)) and concentrations of blood lactate and plasma OT immediately before, during and immediately after the tests, respectively. RESULTS: Significant increases (p < 0.01) related to exercise were recorded in VO(2) and lactate concentration within each group, while no such changes were observed in OT levels. OT values, on the other hand, were significantly lower (p < 0.01) in EXP than in CONT throughout the tests. CONCLUSION: It was concluded that plasma OT shows no response to graded exercise until exhaustion in professional cyclists.  相似文献   

16.
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.  相似文献   

17.
Cerebral blood flow and O2 delivery during exercise are important for well-being at altitude but have not been studied. We expected flow to increase on arrival at altitude and then to fall as O2 saturation and hemoglobin increased, thereby maintaining cerebral O2 delivery. We used Doppler ultrasound to measure internal carotid artery flow velocity at sea level and on Pikes Peak, CO (4,300 m). In an initial study (1987, n = 7 men) done to determine the effect of brief (5-min) exercises of increasing intensity, we found at sea level that velocity [24.8 +/- 1.4 (SE) cm/s rest] increased by 15 +/- 7, 30 +/- 6, and 22 +/- 8% for cycle exercises at 33, 71, and 96% of maximal O2 uptake, respectively. During acute hypobaric hypoxia in a decompression chamber (inspired PO2 = 83 Torr), velocity (23.2 +/- 1.4 cm/s rest) increased by 33 +/- 6, 20 +/- 5, and 17 +/- 9% for exercises at 45, 72, and 98% of maximal O2 uptake, respectively. After 18 days on Pikes Peak (inspired PO2 = 87 Torr), velocity (26.6 +/- 1.5 cm/s rest) did not increase with exercise. A subsequent study (1988, n = 7 men) of the effect of prolonged exercise (45 min at approximately 100 W) found at sea level that velocity (24.8 +/- 1.7 cm/s rest) increased by 22 +/- 6, 13 +/- 5, 17 +/- 4, and 12 +/- 3% at 5, 15, 30, and 45 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The normal respiratory muscle effort at maximal exercise requires a significant fraction of cardiac output and causes leg blood flow to fall. We questioned whether the high levels of respiratory muscle work experienced in heavy exercise would affect performance. Seven male cyclists [maximal O(2) consumption (VO(2)) 63 +/- 5 ml. kg(-1). min(-1)] each completed 11 randomized trials on a cycle ergometer at a workload requiring 90% maximal VO(2). Respiratory muscle work was either decreased (unloading), increased (loading), or unchanged (control). Time to exhaustion was increased with unloading in 76% of the trials by an average of 1.3 +/- 0.4 min or 14 +/- 5% and decreased with loading in 83% of the trials by an average of 1.0 +/- 0.6 min or 15 +/- 3% compared with control (P < 0.05). Respiratory muscle unloading during exercise reduced VO(2), caused hyperventilation, and reduced the rate of change in perceptions of respiratory and limb discomfort throughout the duration of exercise. These findings demonstrate that the work of breathing normally incurred during sustained, heavy-intensity exercise (90% VO(2)) has a significant influence on exercise performance. We speculate that this effect of the normal respiratory muscle load on performance in trained male cyclists is due to the associated reduction in leg blood flow, which enhances both the onset of leg fatigue and the intensity with which both leg and respiratory muscle efforts are perceived.  相似文献   

19.
Validity of pulse oximetry during exercise in elite endurance athletes.   总被引:2,自引:0,他引:2  
Eleven highly trained male cyclists [maximal aerobic power (VO2max) = 70.6 +/- 4.2 ml.kg-1.min-1] performed both high intensity constant load (90-95% VO2max) and incremental cycle exercise tests with arterial blood sampling to evaluate the accuracy of pulse oximeter estimates (%SpO2) of arterial oxyhemoglobin fraction of total hemoglobin (%HbO2). Three subjects also performed an incremental exercise test in hypoxic conditions (inspired partial pressure of O2 = 89, 93, or 100 Torr). Arterial %HbO2 was determined via CO-oximetry and ranged from 72 to 99%. Three Ohmeda 3740 pulse oximeters were used to estimate %HbO2, one on each ear lobe and a finger probe. The finger probe tended to provide the best estimate of %HbO2 during exercise: the mean %SpO2 - %HbO2 difference for 232 exercise observations was 0.52 +/- 1.36% (SD). Finger probe %SpO2 and %HbO2 were highly correlated [r = 0.98, standard error of the estimate (SEE) = 1.32%, P less than 0.0001]. The accuracy of pulse oximeters has been questioned during high-intensity exercise. When aerobic power was greater than 81% of VO2max (n = 75), the finger probe's mean error was -0.01 +/- 1.40%. Finger probe %SpO2 and %HbO2 were highly correlated (r = 0.97, SEE = 1.32%, P less than 0.0001). These results indicate that this pulse oximeter is a valid predictor of %HbO2 in elite athletes during cycle exercise.  相似文献   

20.
The effects of concurrent hypoxic/endurance training on mitochondrial respiration in permeabilized fibers in trained athletes were investigated. Eighteen endurance athletes were divided into two training groups: normoxic (Nor, n = 8) and hypoxic (H, n = 10). Three weeks (W1-W3) of endurance training (5 sessions of 1 h to 1 h and 30 min per week) were completed. All training sessions were performed under normoxic [160 Torr inspired Po(2) (Pi(O(2)))] or hypoxic conditions ( approximately 100 Torr Pi(O(2)), approximately 3,000 m) for Nor and H group, respectively, at the same relative intensity. Before and after the training period, an incremental test to exhaustion in normoxia was performed, muscle biopsy samples were taken from the vastus lateralis, and mitochondrial respiration in permeabilized fibers was measured. Peak power output (PPO) increased by 7.2% and 6.6% (P < 0.05) for Nor and H, respectively, whereas maximal O(2) uptake (Vo(2 max)) remained unchanged: 58.1 +/- 0.8 vs. 61.0 +/- 1.2 ml.kg(-1).min(-1) and 58.5 +/- 0.7 vs. 58.3 +/- 0.6 ml.kg(-1).min(-1) for Nor and H, respectively, between pretraining (W0) and posttraining (W4). Maximal ADP-stimulated mitochondrial respiration significantly increased for glutamate + malate (6.27 +/- 0.37 vs. 8.51 +/- 0.33 mumol O(2).min(-1).g dry weight(-1)) and significantly decreased for palmitate + malate (3.88 +/- 0.23 vs. 2.77 +/- 0.08 mumol O(2).min(-1).g dry weight(-1)) in the H group. In contrast, no significant differences were found for the Nor group. The findings demonstrate that 1) a 3-wk training period increased the PPO at sea level without any changes in Vo(2 max), and 2) a 3-wk hypoxic exercise training seems to alter the intrinsic properties of mitochondrial function, i.e., substrate preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号