首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteins of Klebsiella pneumoniae, termed Yor5 and Yco6, were analyzed for their capacity to participate in the reversible phosphorylation of proteins on tyrosine. First, protein Yco6 was overproduced from its specific gene and purified to homogeneity by affinity chromatography. Upon incubation in the presence of radioactive adenosine triphosphate, it was found to effectively autophosphorylate. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at tyrosine. Second, protein Yor5 was also overproduced from the corresponding gene and purified to homogeneity by affinity chromatography. It was shown to contain a phosphatase activity capable of cleaving the synthetic substrate p-nitrophenyl phosphate into p-nitrophenol and free phosphate. In addition, it was assayed on individual phosphorylated amino acids and appeared to dephosphorylate specifically phosphotyrosine, with no effect on phosphoserine or phosphothreonine. Such specificity for phosphotyrosine was confirmed by the observation that Yor5 was able to dephosphorylate protein Yco6 previously autophosphorylated. Together, these data demonstrate that similarly to other bacterial species including Acinetobacter johnsonii and Escherichia coli, the cells of K. pneumoniae contain both a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase. They also provide evidence that this phosphatase can utilize the kinase as an endogenous substrate, which suggests the occurrence of a regulatory mechanism connected with reversible protein phosphorylation on tyrosine. Since Yco6 and Yor5 are both involved in the synthesis of capsular polysaccharide and since capsules are essential to the virulence of K. pneumoniae, we suggest that reversible protein phosphorylation on tyrosine may be part of the cascade of reactions that determine the pathogenicity of bacteria.  相似文献   

2.
The phosphorylation of proteins at tyrosine residues is known to play a key role in the control of numerous fundamental processes in animal systems. In contrast, the biological significance of protein-tyrosine phosphorylation in bacteria, which has only been recognised recently, is still unclear. Here, we have analysed the role in Escherichia coli cells of an autophosphorylating protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb, by performing knock-out experiments on the corresponding genes, wzc and wzb, and looking at the metabolic consequences induced. The results demonstrate that the phosphorylation of Wzc, as regulated by Wzb, is directly connected with the production of a particular capsular polysaccharide, colanic acid. Thus, when Wzc is phosphorylated on tyrosine, no colanic acid is synthesised by bacteria, but when dephosphorylated by Wzb, colanic acid is produced. This process is rather specific to the pair of proteins Wzc/Wzb. Indeed, a much lesser effect, if any, on colanic acid synthesis is observed when knock-out experiments are performed on another pair of genes, etk and etp, which also encode respectively a protein-tyrosine kinase, Etk, and a phosphotyrosine-protein phosphatase, Etp, in E. coli. In addition, the analysis of the phosphorylation reaction at the molecular level reveals differences between Gram-negative and Gram-positive bacteria, namely in the number of protein components required for this reaction to occur.  相似文献   

3.
The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.  相似文献   

4.
Autophosphorylation of protein-tyrosine kinases (PTKs) involved in exopolysaccharide and capsular polysaccharide biosynthesis and transport has been observed in a number of Gram-negative and Gram-positive bacteria. However, besides their own phosphorylation, little is known about other substrates targeted by these protein-modifying enzymes. Here, we present evidence that the protein-tyrosine kinase Wzc of Escherichia coli is able to phosphorylate an endogenous enzyme, UDP-glucose dehydrogenase (Ugd), which participates in the synthesis of the exopolysaccharide colanic acid. The process of phosphorylation of Ugd by Wzc was shown to be stimulated by previous autophosphorylation of Wzc on tyrosine 569. The phosphorylation of Ugd was demonstrated to actually occur on tyrosine and result in a significant increase of its dehydrogenase activity. In addition, the phosphotyrosine-protein phosphatase Wzb, which is known to effectively dephosphorylate Wzc, exhibited only a low effect, if any, on the dephosphorylation of Ugd. These data were related to the recent observation that two other UDP-glucose dehydrogenases have been also shown to be phosphorylated by a PTK in the Gram-positive bacterium Bacillus subtilis. Comparative analysis of the activities of PTKs from Gram-negative and Gram-positive bacteria showed that they are regulated by different mechanisms that involve, respectively, either the autophosphorylation of kinases or their interaction with a membrane protein activator.  相似文献   

5.
Many Gram-positive and Gram-negative bacteria utilize polysaccharide surface layers called capsules to evade the immune system; consequently, the synthesis and export of the capsule are a potential therapeutic target. In Escherichia coli K-30, the integral membrane tyrosine autokinase Wzc and the cognate phosphatase Wzb have been shown to be key for both synthesis and assembly of capsular polysaccharides. In the Gram-positive bacterium Streptococcus pneumoniae, the CpsCD complex is analogous to Wzc and the phosphatase CpsB is the corresponding cognate phosphatase. The phosphatases are known to dephosphorylate their corresponding autokinases, yet despite their functional equivalence, they share no sequence homology. We present the structure of Wzb in complex with phosphate and high-resolution structures of apo-CpsB and a phosphate-complexed CpsB. We show that both proteins are active toward Wzc and thereby demonstrate that CpsB is not specific for CpsCD. CpsB is a novel enzyme and represents the first solved structure of a tyrosine phosphatase from a Gram-positive bacterium. Wzb and CpsB have completely different structures, suggesting that they must operate by very different mechanisms. Although the mechanism of Wzb can be inferred from previous studies, CpsB appears to have a tyrosine phosphatase mechanism not observed before. We propose a chemical mechanism for CpsB based on site-directed mutagenesis and structural data.  相似文献   

6.
Wzc proteins are tyrosine autokinases. They are found in some important bacterial pathogens of humans and livestock as well as plant-associated bacteria, and are often encoded within gene clusters determining synthesis and assembly of capsular and extracellular polysaccharides. Autophosphorylation of Wzc(cps) is essential for assembly of the serotype K30 group 1 capsule in Escherichia coli O9a:K30, although a genetically unlinked Wzc(cps)-homologue (Etk) can also participate with low efficiency. While autophosphorylation of Wzc(cps) is required for assembly of high molecular weight K30 capsular polysaccharide, it is not essential for either the synthesis of the K30 repeat units or for activity of the K30 polymerase enzyme. Paradoxically, the cognate phosphotyrosine protein phosphatase for Wzc(cps), Wzb(cps), is also required for capsule expression. The tyrosine-rich domain at the C terminus of Wzc(cps) was identified as the site of phosphorylation and autophosphorylation of Wzc requires a functional Walker A motif. Intermolecular transphosphorylation of Wzc(cps) was detected in strains expressing a combination of mutant Wzc(cps) derivatives. The N- and C-terminal domains of Wzc(cps) were expressed independently to mimic the situation found naturally in Gram-positive bacteria. In this format, both domains were required for phosphorylation of the Wzc(cps) C terminus, and for capsule assembly. Regulation by a post-translational phosphorylation event represents a new dimension in the assembly of bacterial cell-surface polysaccharides.  相似文献   

7.
The genes associated with the biosynthesis of the polymeric bioemulsifier emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1 are clustered within a 27-kbp region termed the wee cluster. This report demonstrates the involvement of two genes of the wee cluster of RAG-1, wzb and wzc, in emulsan biosynthesis. The two gene products, Wzc and Wzb were overexpressed and purified. Wzc exhibited ATP-dependent autophosphorylating protein tyrosine kinase activity. Wzb was found to be a protein tyrosine phosphatase capable of dephosphorylating the phosphorylated Wzc. Using the synthetic substrate p-nitrophenyl phosphate (PNPP) Wzb exhibited a V(max) of 12 micromol of PNPP min(-1) mg(-1) and a K(m) of 8 mM PNPP at 30 degrees C. The emulsifying activity of mutants lacking either wzb or wzc was 16 and 15% of RAG-1 activity, respectively, suggesting a role for the two enzymes in emulsan production. Phosphorylation of Wzc was found to occur within a cluster of five tyrosine residues at the C terminus. Colonies from a mutant in which these five tyrosine residues were replaced by five phenylalanine residues along with those of a second mutant, which also lacked Wzb, exhibited a highly viscous colony consistency. Emulsan activity of these mutants was 25 and 24% of that of RAG-1, respectively. Neither of these mutants contained cell-associated emulsan. However, they did produce an extracellular high-molecular-mass galactosamine-containing polysaccharide. A model is proposed in which subunit polymerization, translocation and release of emulsan are all associated and coregulated by tyrosine phosphorylation.  相似文献   

8.
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.  相似文献   

9.
Wzc(CPS) is a tyrosine autokinase essential for the assembly of a high-molecular-weight (HMW) group 1 capsular polysaccharide (CPS) in Escherichia coli. Homologues of Wzc participate in the formation of CPS and exopolysaccharides in a variety of gram-positive and gram-negative bacteria. Phosphorylation of tyrosine residues in the Wzc(CPS) C terminus is essential for HMW CPS assembly. Overexpression of Wzb(CPS) (phosphatase) in a wild-type background caused a 3.7-fold decrease in the amount of cell-associated K30 CPS produced, confirming the importance of Wzc(CPS) phosphorylation for capsule assembly. In this study, the tyrosine-rich region was dissected in an attempt to identify residues critical for Wzc(CPS) phosphorylation and/or capsule expression. Site-directed mutagenesis demonstrated that no single tyrosine residue in this region is sufficient for detectable phosphorylation of Wzc(CPS) in vivo or for HMW CPS expression. Furthermore, no single tyrosine residue is essential for phosphorylation or capsule assembly, since removal of any one tyrosine residue has no detectable effect. Altering combinations of tyrosine residues (from two to five) led to Wzc(CPS) derivatives that were still competent for phosphorylation but that could not support assembly of HMW CPS, showing that phosphorylation of Wzc per se is not an accurate measure of its ability to function in capsule assembly. One interpretation of these data is that the overall level of phosphorylation in this region, rather than the precise combination of residues accessible to phosphorylation, is important for the activity of Wzc(CPS). Tyrosine 569, a residue shown to modulate the in vitro phosphorylation of Wzc(CA) from E. coli K-12, was also mutated. The derivative with this mutation still functioned in capsule assembly. Quantitation of K30(CPS) from this mutant revealed no difference in the amount of polymer produced. Finally, dithiobis(succinimidylpropionate) cross-linking was used to confirm that Wzc(CPS) forms complexes in vivo, independent of the phosphorylation state of the protein.  相似文献   

10.
Protein tyrosine kinase was purified extensively from a 30,000 X g particulate fraction of bovine spleen by a procedure involving four column chromatographies: DEAE-Sepharose, polyamino acids affinity, hydroxylapatite, and Sephacryl S-200 molecular sieving. The purification resulted in more than 3,000-fold enrichment in [Val5]angiotensin II phosphorylation activity (specific activity 202 nmol/min/mg). All column chromatography profiles showed single protein tyrosine kinase activity peaks with the exception of that of affinity chromatography, where about 50% of the enzyme activity appeared with the breakthrough fraction; only the bound enzyme was further purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of a purified sample phosphorylated in the presence of [gamma-32P]ATP revealed the presence of a single phosphorylated polypeptide of molecular weight 50,000 which represents about 40% of total protein. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions showed that protein tyrosine kinase activity co-migrated with the phosphoprotein. Stoichiometry of the phosphorylation of the 50-kDa polypeptide was found to be 1.0 mol/mol. The purified sample did not appear to contain phosphotyrosine protein phosphatase activity. Both casein and histone could be phosphorylated by the purified sample, and the phosphorylation occurred only at tyrosine residue, suggesting that there was no protein serine and threonine kinase contamination.  相似文献   

11.
Vaccinia virus encodes two protein kinases (B1 and F10) and a dual-specificity phosphatase (VH1), suggesting that phosphorylation and dephosphorylation of substrates on serine/threonine and tyrosine residues are important in regulating diverse aspects of the viral life cycle. Using a recombinant in which expression of the H1 phosphatase can be regulated experimentally (vindH1), we have previously demonstrated that repression of H1 leads to the maturation of noninfectious virions that contain several hyperphosphorylated substrates (K. Liu et al., J. Virol. 69:7823-7834). In this report, we demonstrate that among these is a 25-kDa protein that is phosphorylated on tyrosine residues in H1-deficient virions and can be dephosphorylated by recombinant H1. We demonstrate that the 25-kDa phosphoprotein represents the product of the A17 gene and that A17 is phosphorylated on serine, threonine, and tyrosine residues during infection. Detection of phosphotyrosine within A17 is abrogated when Tyr(203) (but not Tyr(3), Tyr(6), or Tyr(7)) is mutated to phenylalanine, suggesting strongly that this amino acid is the site of tyrosine phosphorylation. Phosphorylation of A17 fails to occur during nonpermissive infections performed with temperature-sensitive mutants defective in the F10 kinase. Our data suggest that this enzyme, which was initially characterized as a serine/threonine kinase, might in fact have dual specificity. This hypothesis is strengthened by the observation that Escherichia coli induced to express F10 contain multiple proteins which are recognized by antiphosphotyrosine antiserum. This study presents the first evidence for phosphotyrosine signaling during vaccinia virus infection and implicates the F10 kinase and the H1 phosphatase as the dual-specificity enzymes that direct this cycle of reversible phosphorylation.  相似文献   

12.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

13.
A neutral phosphatase which catalyzes the hydrolysis of p-nitrophenylphosphate has been purified to homogeneity from wheat seedlings. The enzyme is a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 260 nm, and sedimentation coefficient of 3.2 S. That the enzyme is a glycoprotein is surmised from its chromatographic property on Concanavalin A-Sepharose column. An examination of the substrate specificity indicates that the enzyme exhibits a preference for phosphotyrosine over a number of phosphocompounds, including p-nitrophenylphosphate and several glycolytic intermediates. Both phosphoserine and phosphothreonine are not hydrolyzed by the enzyme. The phosphatase activity is not affected by high concentrations of chelating agents and does not require metal ions. Molybdate, orthovanadate, Zn2+, and Hg2+ are all potent inhibitors of the phosphatase activity. The ability of the phosphatase to dephosphorylate protein phosphotyrosine has been investigated. [32P-Tyr]poly(Glu,Tyr)n, [32P-Tyr]alkylated bovine serum albumin, [32P-Tyr]angiotensin-I, and [32P-Tyr]band 3 (from human erythrocyte) are all substrates of the phosphatase. On the other hand, the enzyme has no activity toward protein phosphoserine and phosphothreonine. Our result further indicates that the neutral phosphatase is distinct from the wheat germ acid phosphatase. The latter enzyme is found to dephosphorylate phosphotyrosyl as well as phosphoseryl and phosphothreonyl groups in proteins. In light of the many similarities in properties to phosphotyrosyl protein phosphatases isolated from several sources, it is suggested that the wheat seedling phosphatase may participate in cellular regulation involving protein tyrosine phosphorylation.  相似文献   

14.
The nicotinic acetylcholine receptor (nAChR) is phosphorylated to a high stoichiometry on tyrosine residues both in vitro and in vivo. Moreover, tyrosine phosphorylation has been shown to regulate the functional properties of the receptor. We report here the purification and characterization of a protein tyrosine phosphatase that dephosphorylates tyrosine-phosphorylated nAChR from Torpedo electroplax, a tissue highly enriched in the nAChR. The 32P-labeled tyrosine phosphorylated nAChR was used as a substrate to monitor the enzyme activity during purification. The protein tyrosine phosphatase activity was purified using three consecutive cation-exchange columns (phosphocellulose, S Sepharose Fast Flow, Bio-Rex 70), followed by two affinity matrices (p-aminobenzylphosphonic acid-agarose and thiophosphotyrosyl nAChR-Sepharose 4B). The enzyme activity was purified to homogeneity, with an overall purification of 25,000-fold and a yield of 20%. The purified enzyme had an apparent molecular mass of 43 kDa on sodium dodecyl sulfate-polyacrylamide gels and migrated as a monomer during Superose 12 chromatography. It had a neutral pH optimum and a specific activity of 18 mumol/mg of protein/min, with a Km of 4.7 microM for tyrosine-phosphorylated nAChR. The phosphatase was specific for tyrosine phosphorylated nAChR; it showed no activity towards the nAChR phosphorylated on serine residues by cAMP-dependent protein kinase. The enzyme also dephosphorylated 32P-labeled poly(Glu-Tyr) (4:1). However, it did not dephosphorylate p-nitrophenylphosphate. The tyrosine phosphatase was inhibited by ammonium molybdate (IC50 of 2 microM), sodium vanadate (IC50 of 150 microM) and the divalent cations Mg2+, Mn2+, and Ca2+ at millimolar concentrations, but not by 100 microM ZnCl or 10 mM NaF. Poly-(Glu, Tyr) (4:1) and heparin inhibited the enzyme activity at micromolar concentrations. These unique properties of the purified enzyme suggest that it may be a novel protein tyrosine phosphatase that specifically dephosphorylates the nAChR.  相似文献   

15.
PTP-MEG2 is an intracellular protein tyrosine phosphatase with a putative lipid-binding domain at the N-terminus. The present study reports expression, purification, and characterization of the full-length form of the enzyme plus a truncated form containing the catalytic domain alone. Full-length PTP-MEG2 was expressed with an adenovirus system and purified from cytosolic extracts of human 293 cells infected with the recombinant adenovirus. The purification scheme included chromatographic separation of cytosolic extracts on fast flow Q-Sepharose, heparin-agarose, l-histidyldiazobenzylphosphonic acid agarose, and hydroxylapatite. The enrichment of PTP-MEG2 from the cytosol was about 120-fold. The truncated form of PTP-MEG2 was expressed in E. coli cells as a non-fusion protein and purified by using a chromatographic procedure similar to that used for the full-length enzyme. The purified full-length and truncated enzymes showed single polypeptide bands on SDS-polyacrylamide gel electrophoresis under reducing conditions and behaved as monomers on gel exclusion chromatography. With para-nitrophenylphosphate and phosphotyrosine as substrates, both forms of the enzyme exhibited classical Michaelis-Menten kinetics. Their responses to pH, ionic strength, metal ions, and protein phosphatase inhibitors are similar to those observed with other characterized tyrosine phosphatases. Compared with full-length PTP-MEG2, the truncated DeltaPTP-MEG2 displayed significantly higher V(max) and lower K(m) values, suggesting that the N-terminal putative lipid-binding domain may have an inhibitory role. The full-length and truncated forms of PTP-MEG2 were also expressed as GST fusion proteins in E. coli cells and purified to near homogeneity through affinity columns. However, the specific phosphatase activities of the GST fusion proteins were 10-25-fold below those obtained with the correspondent non-fusion proteins.  相似文献   

16.
Sperm thiol oxidation and the ability to undergo protein tyrosine phosphorylation are associated with the acquisition of sperm motility and fertilizing ability during passage of spermatozoa through the epididymis. Phosphotyrosine levels in various cells are controlled by tyrosine kinase versus phosphatase, with the latter known to be inhibited by oxidation. In the present paper we examine whether changes in thiol status during sperm maturation affect rat sperm protein phosphotyrosine levels and protein phosphotyrosine phosphatase (PTP) activity. Tyrosine phosphorylation, as demonstrated by immunoblotting (IB), was significantly increased in several sperm tail proteins during maturation in the epididymis. Sperm thiol oxidation with diamide enhanced tail protein phosphorylation; reduction of disulfides with dithiothreitol diminished phosphorylation. In the sperm head, a moderate increase in tyrosine phosphorylation was accompanied by altered localization of phosphotyrosine proteins during maturation. Blocking of thiols and PTP activity with N-ethylmaleimide led to increased tyrosine phosphorylation of protamine in caput sperm heads. Several PTP bands were identified by IB. In the caput spermatozoa, a prominent level of the 50 kDa band was present, whereas in the cauda spermatozoa a very low level of the 50 kDa band was found. PTP activity, measured by using p-nitrophenyl phosphate as a substrate, was significantly higher in the caput spermatozoa (high thiol content) than in the cauda spermatozoa (low thiol content). Our results show that PTP activity is correlated with sperm thiol status and suggest that tyrosine phosphorylation of sperm proteins during sperm maturation is promoted by thiol oxidation and diminished PTP.  相似文献   

17.
In bacteria, several proteins have been shown to autophosphorylate on tyrosine residues, but little is known on the molecular mechanism of this modification. To get more information on this matter, we have analyzed in detail the phosphorylation of a particular autokinase, protein Wzc, from Escherichia coli K12. The analysis of the hydropathic profile of this protein indicates that it is composed of two main domains: an N-terminal domain, including two transmembrane alpha-helices, and a C-terminal cytoplasmic domain. The C-terminal domain alone can undergo autophosphorylation and thus appears to harbor the protein-tyrosine kinase activity. By contrast, the N-terminal domain is not phosphorylated when incubated either alone or in the presence of the C-domain, and does not influence the extent of phosphorylation of the C-domain. The C-domain contains six different sites of phosphorylation. Among these, five are located at the C-terminal end of the molecule in the form of a tyrosine cluster (Tyr(708), Tyr(710), Tyr(711), Tyr(713), and Tyr(715)), and one site is located upstream, at Tyr(569). The Tyr(569) residue can autophosphorylate through an intramolecular process, whereas the tyrosine cluster cannot. The phosphorylation of Tyr(569) results in an increased protein kinase activity of Wzc, which can, in turn, phosphorylate the five terminal tyrosines through an intermolecular process. It is concluded that protein Wzc autophosphorylates by using a cooperative two-step mechanism that involves both intra- and interphosphorylation. This mechanism may be of biological significance in the signal transduction mediated by Wzc.  相似文献   

18.
The ephrin receptor A2 (EphA2) is an integral membrane protein tyrosine kinase and a member of the Eph family, the largest known family of receptor tyrosine kinases. EphA2 overexpression is sufficient to transform normal epithelial cells into an aggressive, metastatic phenotype. In normal cells, EphA2 negatively regulates cell growth and invasiveness. Here we report expression of the intact cytoplasmic domain (juxtamembrane linker, tyrosine kinase, and sterile alpha motif domains) of the human EphA2 receptor in an Escherichia coli system. The expressed protein was purified to near homogeneity by use of metal chelation chromatography combined with removal of vector-encoded tags by specific proteolysis. The cytoplasmic domains of EphA2 are expressed as an active kinase, with the expressed protein found to contain phosphorylated tyrosine residues. In addition, protein tyrosine phosphorylation appears only after EphA2 expression is induced and is removable with alkaline phosphatase treatment. The enzyme was purified 5-fold in yields that average 10-30 mg/L of active EphA2 cytoplasmic domains, which will now be used for further biophysical and structural characterization.  相似文献   

19.
Protein phosphatase activity specific for Tyr(P) (phosphotyrosine) residues (PTP-phosphatase) was found in the cytosol and particulate fractions of human placenta. In the particulate fraction, half of the PTP-phosphatase activity could be extracted with 1% Triton X-100. The PTP-phosphatase remaining in the Triton-insoluble residue was solubilized with 0.6 M-KCl plus 1% CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]propane-1-sulphonate) and was purified 1850-fold by adsorption to DEAE-Sepharose, affinity chromatography on Zn2+-iminodiacetate-agarose, phosphocellulose adsorption, Fractogel filtration and Mono Q chromatography. The cytoskeleton-associated PTP-phosphatase was distinguished from acid, alkaline and other protein Ser(P) (phosphoserine)/Thr(P) (phosphothreonine) phosphatases by its neutral pH optimum, activity in the presence of EDTA, inhibition by Zn2+, vanadate, or molybdate, and low activity with either [Ser(P)]phosphorylase a or p-nitrophenyl phosphate. The PTP-phosphate displayed a Km of 0.15 microM with [Tyr(P)]serum albumin as substrate, 10-100-fold lower than the Km for previously described protein phosphatases. The cytoskeleton-associated PTP-phosphatase catalysed the dephosphorylation of receptors for insulin, insulin-like growth factor-1 and epidermal growth factor labelled by autophosphorylation. The properties of this PTP-phosphatase suggest that it plays a role in the regulation of hormone receptors and cytoskeleton proteins by reversible phosphorylation on tyrosine residues.  相似文献   

20.
R K Sharma 《Biochemistry》1991,30(24):5963-5968
Calmodulin-dependent phosphodiesterase was purified to apparent homogeneity from the total calmodulin-binding fraction of bovine heart in a single step by immunoaffinity chromatography. The isolated enzyme had significantly higher affinity for calmodulin than the bovine brain 60-kDa phosphodiesterase isozyme. The cAMP-dependent protein kinase was found to catalyze the phosphorylation of the purified cardiac calmodulin-dependent phosphodiesterase with the incorporation of 1 mol of phosphate/mol of subunit. The phosphodiesterase phosphorylation rate was increased severalfold by histidine without affecting phosphate incorporation into the enzyme. Phosphorylation of phosphodiesterase lowered its affinity for calmodulin and Ca2+. At constant saturating concentrations of calmodulin (650 nM), the phosphorylated calmodulin-dependent phosphodiesterase required a higher concentration of Ca2+ (20 microM) than the nonphosphorylated phosphodiesterase (0.8 microM) for 50% activity. Phosphorylation could be reversed by the calmodulin-dependent phosphatase (calcineurin), and dephosphorylation was accompanied by an increase in the affinity of phosphodiesterase for calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号