首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
Preadipocytes are considered to play a role in adipose tissue inflammation in obesity. The purpose of this study was to determine whether hydroxymethylglutaryl-CoA reductase inhibitor (statin) modulates the nitric oxide (NO) production via inducible NO synthase (iNOS) in preadipocytes. Undifferentiated 3T3-L1 cells, a model of preadipocytes, significantly produced NO by the treatment with the combination of lipopolysaccharide (L), tumor necrosis factor-alpha (T) and interferon-gamma (I). Pre-incubation with simvastatin, a lipophilic statin, or pravastatin, a hydrophilic one, dose-dependently inhibited the NO production in the LTI-treated cells. The effect of simvastatin was offset by mevalonate or geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS paralleled the NO production. The nuclear factor-kappaB (NF-kappaB) was activated by the LTI-treatment, and was inhibited by addition of simvastatin or pravastatin. Mevalonate or GGPP completely offset the effect of simvastatin. Simvastatin or pravastatin also decreased the LTI-stimulated interleukin-6 (IL-6) secretion. These effects of pravastatin were relatively weak compared with those of simvastatin. Y27632, an inhibitor of Rho kinase, also inhibited the LTI-induced NF-kappaB activation and iNOS expression, and decreased the production of NO and IL-6 in 3T3-L1 preadipocytes. These results suggest that statins, especially lipophilic types, inhibit induction of iNOS by inhibiting the small GTP-binding protein signal in preadipocytes.  相似文献   

2.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis, lower serum cholesterol by increasing the activity of low density lipoprotein (LDL) receptors in the liver. In rat liver slices, the dose-response curves for inhibition of [14C]acetate incorporation into cholesterol were similar for the active acid forms of lovastatin, simvastatin, and pravastatin. The calculated IC50 values were approximately 20-50 nM for all three drugs. Interest in possible extrahepatic effects of reductase inhibitors is based on recent findings that some inhibitors of HMG-CoA reductase, lovastatin and simvastatin, can cause cataracts in dogs at high doses. To evaluate the effects of these drugs on cholesterol synthesis in the lens, we developed a facile, reproducible ex vivo assay using lenses from weanling rats explanted to tissue culture medium. [14C]Acetate incorporation into cholesterol was proportional to time and to the number of lenses in the incubation and was completely eliminated by high concentrations of inhibitors of HMG-CoA reductase. At the same time, incorporation into free fatty acids was not inhibited. In marked contrast to the liver, the dose-response curve for pravastatin in lens was shifted two orders of magnitude to the right of the curves for lovastatin acid and simvastatin acid. The calculated IC50 values were 4.5 +/- 0.7 nM, 5.2 +/- 1.5 nM, and 469 +/- 42 nM for lovastatin acid, simvastatin acid, and pravastatin, respectively. Thus, while equally active in the liver, pravastatin was 100-fold less inhibitory in the lens compared to lovastatin and simvastatin. Similar selectivity was observed with rabbit lens. Following oral dosing, ex vivo inhibition of [14C]acetate incorporation into cholesterol in rat liver was similar for lovastatin and pravastatin, but cholesterol synthesis in lens was inhibited by lovastatin by as much as 70%. This inhibition was dose-dependent and no inhibition in lens was observed with pravastatin even at very high doses. This tissue-selective inhibition of sterol synthesis by pravastatin was likely due to the inability of pravastatin to enter the intact lens since pravastatin and lovastatin acid were equally effective inhibitors of HMG-CoA reductase enzyme activity in whole lens homogenates. We conclude that pravastatin is tissue-selective with respect to lens and liver in its ability to inhibit cholesterol synthesis.  相似文献   

3.
Here we studied direct vasodilation induced by statins in isolated bovine coronary arteries. In rings of coronary bovine arteries preconstricted with prostaglandin F(2 alpha) (3 x 10(-8) - 10(-5)), lovastatin, simvastatin, atorvastatin and cerivastatin (3-30 microM) but not pravastatin induced concentration-dependent vasodilation. Removal of endothelium diminished response to simvastatin, cerivastatin and atorvastatin (30 microM) (67.4+/-4.56 vs. 22.7+/-8.14%, 96.9+/-2.27% vs. 54.5+/-6.86%, 67.4+/-4.01% vs. 34.6+/-5.66%, respectively). In presence of L-NAME (300 microM) or indomethacin (5 microM) responses to simvastatin, atorvastatin and cerivastatin, were also partially diminished. In contrast, lovastatin-induced vasorelaxation was not significantly affected by removal of endothelium (35.6+/-4.19% vs. 28.8+/-5.24%) or by pretreatment with L-NAME or indomethacin. In summary, with the exception of pravastatin, statins act as coronary vasodilators. Simvastatin, cerivastatin and atorvastatin but not lovastatin induced vasodilation displayed endothelium dependent- and endothelium-independent components. The endothelium-dependent effect of statins was mediated by NO and PGI(2), while the mechanism of smooth muscle cells-dependent component remains to be determined.  相似文献   

4.
The present study was designed to determine whether hydroxymethylglutaryl-CoA reductase inhibitors (statins) modulate the NO production via iNOS in adipocytes stimulated by lipopolysaccharide (L) and tumour necrosis factor-alpha (T). Well-differentiated 3T3-L1 adipocytes significantly produced NO by LT-treatment. Pre-incubation with simvastatin, a lipophilic statin, pravastatin, a hydrophilic one, or Y27632, an inhibitor of Rho kinase, further enhanced the production of NO. The effect of simvastatin was offset by mevalonate and geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS parallelled the NO production. The NF-kappaB was activated by the LT-treatment and was further enhanced by simvastatin, pravastatin or Y27632 addition. Mevalonate and GGPP completely offset the effect of simvastatin. Statins and Y27632 also further increased the interleukin-6 secretion in the LT-treated 3T3-L1 adipocytes. These results suggest that statins, especially lipophilic type, enhance induction of iNOS by inhibiting the small GTP-binding protein signal in adipocytes.  相似文献   

5.
Our objective was to investigate the effects of orange juice on the pharmacokinetics of pravastatin in rats and healthy volunteers. The pharmacokinetics of pravastatin (100 mg/kg p.o.) were assessed with water, orange juice, and carbohydrates (12.5 ml/kg over 30 min) and with acetic acid (0.1 M, pH 3.44). The pharmacokinetics of simvastatin (100 mg/kg p.o.) were assessed with water and orange juice. In addition, the pharmacokinetics (based on plasma levels) of pravastatin 80 mg/kg i.v. were assessed with water and orange juice (5 ml/kg) in rats. The pharmacokinetics of oral pravastatin (10 mg) were assessed when administered with water and orange juice (800 ml over 3 h) in a two-way crossover study in 14 healthy volunteers. Orange juice significantly increased the area under the curve (0-150 min) of pravastatin in rats. Orange juice had no effects on the pharmacokinetic parameters of intravenously administered pravastatin in rats. Carbohydrates and acetic acid with pH and concentration equivalent to those of orange juice also resulted in no statistically significant differences in pravastatin pharmacokinetic parameters in rats. Orange juice did not result in any significant differences in the pharmacokinetic parameters of simvastatin in rats. Orange juice significantly increased oatp1 and oatp2 mRNA and protein in the intestine of rats. Orange juice significantly increased the area under the curve (0-240 min) of pravastatin in healthy volunteers. In conclusion, orange juice increases the bioavailability of pravastatin administered orally. Oatp1 and oatp2 may be related to increases of pharmacokinetics of pravastatin by orange juice.  相似文献   

6.
The present study was designed to determine whether hydroxymethylglutaryl-CoA reductase inhibitors (statins) modulate the NO production via iNOS in adipocytes stimulated by lipopolysaccharide (L) and tumour necrosis factor-α (T). Well-differentiated 3T3-L1 adipocytes significantly produced NO by LT-treatment. Pre-incubation with simvastatin, a lipophilic statin, pravastatin, a hydrophilic one, or Y27632, an inhibitor of Rho kinase, further enhanced the production of NO. The effect of simvastatin was offset by mevalonate and geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS parallelled the NO production. The NF-κB was activated by the LT-treatment and was further enhanced by simvastatin, pravastatin or Y27632 addition. Mevalonate and GGPP completely offset the effect of simvastatin. Statins and Y27632 also further increased the interleukin-6 secretion in the LT-treated 3T3-L1 adipocytes. These results suggest that statins, especially lipophilic type, enhance induction of iNOS by inhibiting the small GTP-binding protein signal in adipocytes.  相似文献   

7.
Tissue selectivity of pravastatin sodium (pravastatin) in inhibition of cholesterol synthesis was investigated and its effect was compared with other 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, such as lovastatin, simvastatin and ML-236B. Inhibition of cholesterol synthesis in vivo was measured by incorporation of radioactivity into the sterol fraction 1 h after intraperitoneal injection of [14C]acetate to mice. The drugs were orally administered to mice 2 h before the acetate injection. When pravastatin at a dose of 20 mg/kg was administered to mice, about 90% inhibition of cholesterol synthesis was observed in liver and ileum, but the inhibition was less than 14% in kidney, spleen, adrenal, testis, prostate and brain. This tissue selectivity of pravastatin was also demonstrated even in varying doses (5-100 mg/kg) and time (75-180 min) after drug administration. Other 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors did not show such a tissue-selective inhibition of sterol synthesis under the same conditions. These results obtained with the in vivo study were confirmed in vitro by the inhibition of sterol synthesis in various cultured cells and rats lenses, as well as by cellular uptake of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.  相似文献   

8.
Various inorganic selenocompounds dose-dependently inhibited the rat brain prostaglandin (PG) D synthase, both in the purified enzyme preparation and in the crude brain supernatant. All of the quadrivalent selenium compounds tested had a very limited range of IC50 values in the purified enzyme (11-12 microM) and in the brain supernatant (9-15 microM). A divalent selenium compound was also inhibitory, but a hexavalent selenium compound was ineffective. In contrast, organic selenocompounds such as selenomethionine and selenourea had no effect on the PGD synthase activity. Furthermore, sodium sulfate and sodium sulfite up to 10 mM did not inhibit the activity. The inhibition by selenium required the preincubation of the metal with sulfhydryl compounds such as dithiothreitol (DTT), indicating that the formation of selenotrisulfide or some other adduct(s) is essential for the inhibition. Furthermore, the inhibition was reversed by an excess amount of dithiothreitol, suggesting that the selenotrisulfide derivative of DTT binds to the SH group of the PGD synthase. The kinetic analysis revealed the inhibition by selenite to be noncompetitive with a Ki value of 10.1 microM. On the other hand, glutathione-dependent PGD synthase from rat spleen was much less inhibited, and PGF synthase and PGD2 11-ketoreductase activities were not inhibited by the selenium compound.  相似文献   

9.
Tissue selectivity of lovastatin, simvastatin and pravastatin was determined in male rats. Peak levels of active drug were found in all tissues examined between 0.5 and 2 hours after oral administration. The area under the curve describing 24 hour exposure of the tissues to drug indicated that the drugs were preferentially concentrated in the liver. However, the concentration of pravastatin was approximately 50% that of either lovastatin or simvastatin in the liver and 3-6 times higher in peripheral tissues. These studies demonstrate that the hydrophobic prodrugs, lovastatin and simvastatin show greater selectivity than the hydrophilic agent pravastatin towards the liver which is the target organ for inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.  相似文献   

10.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

11.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

12.
The three vastatins examined, lovastatin, simvastatin and pravastatin, are equally strong inhibitors of the sterol synthesis in human hepatocytes in culture with IC50-values of 4.1, 8.0 and 2.0 nM, respectively. However, in the human extrahepatic cells: umbilical vascular endothelial cells, retinal pigment epithelial cells, cornea fibroblasts and granulosa cells, pravastatin was much less inhibiting the sterol synthesis than lovastatin or simvastatin. It was observed as well that longer incubation with the vastatins resulted in higher IC50-values. In order to show that the feedback regulation mechanism for 3-hydroxy-3-methylglutaryl-coenzyme A reductase was involved in this phenomena mRNA levels were measured in human vascular endothelial cells after incubation with the vastatins for 3.5 h and for 20 h. Indeed, lovastatin and simvastatin gave rise to higher levels of HMG-CoA reductase mRNA after 20 h than after 3.5 h of incubation. The differences observed in different human cell types can be explained by supposing that pravastatin is transported into the human hepatocyte via a liver-specific transporter. This was supported by the results of uptake experiments with 14C-labelled pravastatin and 14C-labelled simvastatin into human hepatocytes compared to that into human umbilical endothelial cells (as an example of an extrahepatic cell type). [14C]-Simvastatin was associated with both cell types, whereas [14C]-pravastatin was hardly associated with human endothelial cells, but to a similar extent as [14C]-simvastatin with human hepatocytes.  相似文献   

13.
Statins have been shown to interact with several monocyte/macrophage functions. We tested the effect of pravastatin on transforming growth factor-beta1 (TGF-beta1) production and its possible involvement in scavenger receptors class A (SRA) expression in human THP-1 cells. TGF-beta1s biological activity in THP-1 cell conditioned medium, evaluated by luciferase activity of transfected cell with a TGF-beta responsive promoter, was increased in a dose-dependent manner after incubation with pravastatin (1-20 microM). Pravastatin (1-20 microM) induced a dose-dependent increase in TGF-beta1 mRNA expression and protein production in THP-1 cells. PMA-induced SRA gene and protein expression was suppressed by pravastatin with a mean 3-fold decrease at 10 microM. This last effect was reversed by a mouse monoclonal anti-TGF-beta1 neutralizing antibody. PD98059, a specific inhibitor of MAP kinase cascade, completely reversed pravastatin-induced SRA down-regulation. p44 and p42 isoforms showed a dose-dependent phosphorylation after treatment with pravastatin (1-20 microM) which was inhibited by a mouse monoclonal anti-TGF-beta1 antibody. Our results demonstrate that pravastatin significantly up-regulates TGF-beta1 expression which may be in involved in down-regulation of SRA expression in THP-1 cell cultures. A new pathway for pravastatin effects in atherogenesis can be suggested.  相似文献   

14.
Inhibitors of HMG-CoA reductase (statins) are widely used medications for reduction of cholesterol levels. Statin use significantly reduces risk of cardiovascular disease but has also been associated with lower risk of other diseases and conditions, including dementia. However, some reports suggest that statins also have detrimental effects on the brain. We provide evidence that simvastatin and pravastatin have significantly different effects on expression of genes related to neurodegeneration in astrocytes and neuroblastoma (SK-N-SH) cells in culture. Simvastatin significantly reduced expression of ABCA1 in astrocytes and neuroblastoma cells (by 79% and 97%, respectively; both P < 0.001). Pravastatin had a similar but attenuated effect on ABCA1 in astrocytes (−54%, P < 0.001) and neuroblastoma cells (−70%, P < 0.001). Simvastatin reduced expression of apolipoprotein E in astrocytes (P < 0.01). Furthermore, both statins reduced expression of microtubule-associated protein tau in astrocytes (P < 0.01), while both statins increased its expression in neuroblastoma cells (P < 0.01). In SK-N-SH cells, simvastatin significantly increased cyclin-dependent kinase 5 and glycogen synthase kinase 3β expression, while pravastatin increased amyloid precursor protein expression. Our data suggest that simvastatin and pravastatin differentially affect expression of genes involved in neurodegeneration and that statin-dependent gene expression regulation is cell type specific.—Dong, W., S. Vuletic, and J. J. Albers. Differential effects of simvastatin and pravastatin on expression of Alzheimer’s disease-related genes in human astrocytes and neuronal cells.  相似文献   

15.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

16.
Prostaglandin D synthase in microvessels from the rat cerebral cortex   总被引:1,自引:0,他引:1  
Microvessels, a mixture composed predominantly of small arterioles and capillaries (7-80 micro diameter), were isolated from the rat cerebral cortex by selective nylon sieving and glass bead elutriation. The morphology and purity of the microvessel and cerebral cortex filtrate (virtually free of vascular contamination) were monitored by light microscopy and by the activity of several enzymes: gamma -glutamyl transpeptidase, GSH-S-transferase, prostacyclin synthase and PGD synthase. Prostacyclin and PGD synthesizing activities as well as gamma-glutamyl transpeptidase activity were localized to the microvessels of the rat cerebral cortex whereas GSH-S-Transferase was restricted to the non-vascular filtrate fraction. The characteristics of the PGD synthase were similar to those of the purified enzyme previously described for the rat brain. The microvessel (MV) PGD synthase was localized to the cytosol fraction of the microvessels and did not require reduced glutathione for activity. The enzyme was inhibited by pre-incubation with p-hydroxymercuribenzoate (ImM) or N-ethylmaleimide (ImM). The MV RGD synthase saturated at 15-20 microM PGH2, exhibited an apparent Km of 9.6 microM, and a pH optimum of 8.0-8.1. These findings suggest roles for both prostacyclin and PGD synthesis by the rat cerebral vasculature in the autoregulation of cerebral blood flow and/or neural function. These studies also indicate that the major source of PGI2 and PGD2 synthesis by rat brain homogenates is the microvasculature.  相似文献   

17.
Statins, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, are associated with the prevention of atrial fibrillation (AF) by pleiotropic effects. Recent clinical trial studies have demonstrated conflicting results on anti-arrhythmia between lipophilic and hydrophilic statins. However, the underlying mechanisms responsible for anti-arrhythmogenic effects of statins are largely unexplored. In this study, we evaluated the different roles of lipophilic and hydrophilic statins (simvastatin and pravastatin, respectively) in acetylcholine (100 µM)-activated K+ current (IKACh, recorded by nystatin-perforated whole cell patch clamp technique) which are important for AF initiation and maintenance in mouse atrial cardiomyocytes. Our results showed that simvastatin (1–10 µM) inhibited both peak and quasi-steady-state IKACh in a dose-dependent manner. In contrast, pravastatin (10 µM) had no effect on IKACh. Supplementation of substrates for the synthesis of cholesterol (mevalonate, geranylgeranyl pyrophosphate or farnesyl pyrophosphate) did not reverse the effect of simvastatin on IKACh, suggesting a cholesterol-independent effect on IKACh. Furthermore, supplementation of phosphatidylinositol 4,5-bisphosphate, extracellular perfusion of phospholipase C inhibitor or a protein kinase C (PKC) inhibitor had no effect on the inhibitory activity of simvastatin on I KACh. Simvastatin also inhibits adenosine activated IKACh, however, simvastatin does not inhibit IKACh after activated by intracellular loading of GTP gamma S. Importantly, shortening of the action potential duration by acetylcholine was restored by simvastatin but not by pravastatin. Together, these findings demonstrate that lipophilic statins but not hydrophilic statins attenuate IKACh in atrial cardiomyocytes via a mechanism that is independent of cholesterol synthesis or PKC pathway, but may be via the blockade of acetylcholine binding site. Our results may provide important background information for the use of statins in patients with AF.  相似文献   

18.
19.
Congestive heart failure (CHF) after myocardial infarction is associated with diminished endothelial nitric oxide (NO)-mediated vasorelaxation. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors have been shown to modulate vascular tone independent of the effects on lipid lowering. We hypothesized that simvastatin restores NO-dependent vasorelaxation with CHF. We found that incubation of the normal rat aorta with 0.1 mM simvastatin for 24 h enhanced ACh-mediated vasorelaxation (P < 0.05). Moreover, simvastatin increased (P < 0.05) endothelial NO synthase (eNOS) protein content by >200% (82.0 +/- 14.0 vs. 21.6 +/- 7.9% II/microg). In cultured endothelial cells, simvastatin (10 and 20 microM) increased eNOS levels by 114.7 +/- 39.9 and 212.0 +/- 75.0% II/microg protein, respectively (both P < 0.05; n = 8). In the rat coronary artery ligation model, oral gavage with 20 mg. kg(-1). day(-1) simvastatin for 3 wk decreased (P < 0.05) mean arterial pressure (121 +/- 20 vs. 96.5 +/- 10.8 mmHg) and left ventricular change in pressure with time (4,500 +/- 700 vs. 4,091 +/- 1,064 mmHg/s, n = 6). Simvastatin reduced (P < 0.05) basal vasoconstriction and improved ACh-mediated vasorelaxation in CHF arterial rings. Inhibition of NO generation by N(G)-nitro-L-arginine methyl ester (100 microM) abolished the ACh-induced vasorelaxation in all rats. In conclusion, chronic treatment of CHF with simvastatin restores endothelial NO-dependent dysfunction and upregulates eNOS protein content in arterial tissue.  相似文献   

20.
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号