首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

2.
We provide here the first direct evidence that D-aspartyl residues in peptides are substrates for the L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). We do this by showing that D-aspartic acid beta-methyl ester can be isolated from carboxypeptidase Y digests of enzymatically methylated D-aspartyl-containing synthetic peptides. The specificity of this reaction is supported by the lack of methylation of L-aspartyl-containing peptides under similar conditions. Methylation of D-aspartyl residues in synthetic peptides was not observed previously because with Km values ranging from 2.5 to 4.8 mM, these peptides are recognized by the methyltransferase with 700-10,000-fold lower affinity than are their L-isoaspartyl-containing counterparts. The physiological significance of D-aspartyl methylation was investigated in two ways. First, analysis of in situ methylated human erythrocyte proteins showed that at least 22% of the methyl groups associated with the proteins ankyrin and band 4.1 are on D-aspartyl residues, suggesting that D-aspartyl methylation is an important function of the methyltransferase in vivo. Second, mathematical modeling of the protein aging and methylation reactions occurring in intact erythrocytes indicated that the accumulation of D-aspartyl residues can be reduced as much as 2-5-fold by the methyltransferase activity. Although this reduction is much less than that predicted for L-isoaspartyl residues, it may be significant in maintaining functional proteins throughout the 120-day life span of these cells.  相似文献   

3.
Molecular dynamics simulations of amyloid β(1-42) containing D-aspartic acid residues were performed using several continuous solvent models to investigate the usefulness of simulation methods for D-amino acid-containing proteins and peptides. Normal molecular dynamics simulations and replica exchange molecular dynamics simulations, which are one of the generalized-ensemble algorithms, were performed. Because the β-structure contents of amyloid β(1-42) peptides obtained by replica exchange molecular dynamics simulations with Onufriev-Bashford-Case generalized Born implicit solvent were qualitatively consistent with experimental data, replica exchange molecular dynamics rather than other methods appeared to be more reasonable for calculations of amyloid β(1-42) containing D-aspartic acid residues. Computational results revealed that peptides with stereoinversion of Asp23 tend to form β-sheet structures by themselves, in contrast to the wild-type peptides that form β-sheet structures only after aggregation. These results are expected to be useful for computational investigations of proteins and peptides such as prediction of retention time of peptides and proteins containing D-aspartic acid residues.  相似文献   

4.
A new method has been devised for the complete hydrolysis of proteins with an extremely low level of racemization of amino acids. Proteins are incubated in 10 M HCl at a low temperature to obtain partial hydrolysis. They are then incubated with pronase and finally with leucine aminopeptidase and peptidyl-D-amino-acid hydrolase from Loligo vulgaris. The proposed method ensures the total hydrolysis of either purified proteins or proteins contained in a crude homogenate of animal or vegetable tissue. In both cases, the racemization of amino acids (expressed as rate of D form/D + L form X 100) was lower than 0.015% for aspartic acid and lower than 0.01% for other amino acids. D-Amino acids released from peptides or proteins were estimated with enzymatic methods based on the use of octopus D-aspartate oxidase or hog kidney D-amino acid oxidase; with these enzymes, 0.05 nmol of a D-amino acid was determined in the presence of up to 20 mumols of a mixture of L-amino acids (ratio %D/D + L = 0.00025). The method allows the determination of D-amino acids either in tissues in which they are present in high concentrations (as human cataract lenses, tooth enamel, etc.) or in those with low enantiomer content (as brain, erythrocytes, etc.). Using the method described, we hydrolyzed several synthetic peptides consisting of D- and L-amino acids and determined the amount of D-amino acids. In addition, we totally hydrolyzed all the nuclear proteins of human cataractous lenses. The amount of D-aspartic acid was 0.026 mumols/mg in lenses of women aged between 71 and 76 years and 0.0256 mumols/mg in lenses of men aged between 55 and 72 years. The D-aspartic acid measured corresponds to about 12% with respect to total aspartic acid.  相似文献   

5.
A two-dimensional polyacrylamide gel electrophoresis system which is suitable for the analysis of protein methylation reactions in cells incubated with L-[methyl-3H]methionine is described. The procedure separates proteins under primarily acidic conditions by isoelectric focusing in the first dimension and by sodium dodecyl sulfate electrophoresis at pH 2.4 in the second dimension. The low pH is essential for preserving protein [3H]methyl esters, but it limits the effective separating range of this system to proteins with isoelectric points between 4 and 8. With this system, we have shown that most, if not all, erythrocyte membrane and cytosolic proteins can act as substoichiometric methyl acceptors for an intracellular S-adenosylmethionine-dependent carboxyl methyltransferase and that protein carboxyl methylation reactions may be the major methyl transfer reaction in erythrocytes. These results are most consistent with the generation of protein substrate sites for the carboxyl methyltransferase by spontaneous deamidation and racemization reactions.  相似文献   

6.
L L Lou  S Clarke 《Biochemistry》1987,26(1):52-59
Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77) [Freitag, C., & Clarke, S. (1981) J. Biol. Chem. 256, 6102-6108]. The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl-3H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl-3H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[3H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [3H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[3H]methyl ester or glutamyl gamma-[3H]methyl ester was detected. The formation of D-aspartic acid beta-[3H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl-3H]methionine.  相似文献   

7.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

8.
The synthetic peptide, L-Val-L-Tyr-L-Pro-L-isoAsp-Gly-L-Ala, is a substrate for the erythrocyte and brain protein carboxyl methyltransferases. These enzymes catalyze the methyl esterification of the free alpha-carboxyl group of the isoaspartyl residue, to which the glycyl residue is linked through the side chain beta-carboxyl group. In this work, we show that the alpha-methyl ester of this peptide was rapidly demethylated (t1/2 = 4 min at 37 degrees C, pH 7.4) in erythrocyte cytosolic extracts and that the product of this reaction appears to be the succinimide ring derivative of the peptide. The rate of demethylation, measured at either pH 6.0 or 7.4, was the same in buffer and erythrocyte extracts, suggesting that succinimide formation was a nonenzymatic reaction. The L-succinimide is more stable than the ester, but can be hydrolyzed in buffer at pH 7.4 (t1/2 = 180 min at 37 degrees C) to give a mixture of about 75% isoaspartyl peptide and 25% normal aspartyl peptide. The metabolism of the succinimide hexapeptide in erythrocyte extracts appears to be more complex, however. The implications of this work for the methylation and demethylation of cellular proteins containing structurally altered aspartyl residues are discussed.  相似文献   

9.
The present study investigated the involvement of host sialic acids in the erythrocyte infection by two equine Babesia parasites, Babesia equi and Babesia caballi. We observed that the in vitro growth of both parasites is influenced by the removal of sialic acids from the surface of equine erythrocytes (RBC). When the parasites were cultured with neuraminidase (Nm, EC 3.2.1.18)-treated RBC, in which alpha2-3-linked sialic acid residues were removed from four membrane proteins of the RBC, B. caballi showed a significant inhibition of the erythrocyte invasion, while the intracellular development of B. equi seemed to be significantly affected. The possible involvement of host sialic acid in the erythrocyte invasion by B. caballi was also supported by a significant reduction in the parasite growth accompanied by an increased number of extracellular merozoites after the addition of exogenous 3'-sialyllactose (Neu5Acalpha(2-3)Galbeta(1-4)Glc) into the culture. These results suggest that the alpha2-3-linked sialic acid residues on host RBC play important roles in the erythrocyte infections by B. caballi and B. equi.  相似文献   

10.
Ionophore activation of the human polymorphonuclear neutrophil results in eicosanoid synthesis and the accumulation of inactive 5-lipoxygenase in a membrane compartment. We report here that inhibition of self-inactivation of 5-lipoxygenase in ionophore-treated neutrophils with the reversible inhibitor zileuton, results in the accumulation of active 5-lipoxygenase in the membrane fraction. In zileuton plus ionophore-treated cells, 77% of the specific activity of the cytosolic enzyme from resting cells was diverted to the membrane fraction compared to 22% of the activity translocated when ionophore alone was used to activate the neutrophils. Accumulation of active membrane-associated 5-lipoxygenase was inhibited and reversed by the 5-lipoxygenase translocation inhibitor MK-886. The membrane-associated 5-lipoxygenase was two times more efficient in the production of leukotriene A4 from arachidonate-derived 5-hydroperoxyeicosatetraenoic acid than the cytosolic enzyme. Unlike the cytosolic enzyme, membrane-associated 5-lipoxygenase could metabolize 12(S)- and 15(S)-hydroxyeicosatetraenoic acid to 5(S),12(S)- and 5(S),15(S)-dihydroxyeicosatetraenoic acid, respectively. The ability to metabolize hydroxy fatty acids was dependent upon 5-lipoxygenase-activating protein association, but was lost if 5-lipoxygenase was eluted from the membrane by MK-886. These studies reveal for the first time that significant quantities of active 5-lipoxygenase can be detected in the membrane fraction of activated neutrophils and show that membrane association can alter the substrate specificity of 5-lipoxygenase which is further evidence for the role of the membrane-associated enzyme in the synthesis of 5-lipoxygenase metabolites.  相似文献   

11.
S-Adenosyl-L-homocysteine was used to inhibit the methylation of carboxylic acid residues of membrane proteins in intact human erythrocytes. Incubation of erythrocytes for 24 h with 5 mM each of adenosine and L-homocysteine resulted in the intracellular accumulation of S-adenosyl-L-homocysteine and substantially inhibited membrane protein carboxyl methylation. From the degree of inhibition and from the observed turnover of methylated proteins, we estimate that the number of protein methyl esters in cells incubated with adenosine and L-homocysteine for 20 h is less than 20% that of cells incubated without these inhibitors. No significant differences in the physical deformability properties of the membrane of these hypomethylated cells were detected. However, there was a small but significant (p less than 0.001) increase in the amount of membrane protein D-aspartyl residues in these cells compared to control cells. These observations are consistent with the hypothesis that methylation of membrane proteins at D-aspartyl residues may result in the selective removal or repair of these uncommon residues.  相似文献   

12.
To test whether cellular protein kinases exist that phosphorylate D-amino acid residues, a method was developed for separating O-phospho-D-serine from O-phospho-L-serine and O-phospho-L-tyrosine from O-phospho-D-tyrosine. This was accomplished by converting these amino acids to the L-leucyl dipeptide derivatives followed by separation of the diastereomers by anion-exchange high-performance liquid chromatography. The enantiomeric content of these D- and L-residues were measured in hydrolysates of 32P-labeled proteins produced by the protein kinases of human erythrocytes and the tyrosyl protein kinase of the Abelson leukemia virus. We found no measurable D-phosphoserine in erythrocyte membrane proteins under conditions where a 1% content of this residue relative to L-phosphoserine would have been detected. These values can be used to place an upper hypothetical limit on the fraction of erythrocyte protein kinase activity that is specific for serine residues in the D-configuration. In separate experiments, we examined the specificity of the tyrosyl protein kinases. We found that all of the phosphotyrosine that we isolated from the erythrocyte band 3 NH2-terminal fragment and from the autophosphorylation of the Abelson virus tyrosyl kinase was in the L-configuration.  相似文献   

13.
在以L-天冬氨酸为原料制备D-天冬氨酸的基础上,设计了D-天冬酰胺和D-高丝氨酸的合成新方法。即以L-天冬氨酸为原料,经酯化、消旋、拆分后得到D-天冬氨酸甲酯;D-天冬氨酸甲酯盐酸盐氨解、精制可得到D-天冬酰胺,总收率为49.9%,光学纯度达到99%以上;由D-天冬氨酸甲酯经还原、精制可得到D-高丝氨酸,总收率为64.7%,旋光纯度达到99%以上。  相似文献   

14.
The transport of proteins into yeast mitochondria. Kinetics and pools   总被引:7,自引:0,他引:7  
By double isotope pulse-labeling of yeast cells, we determined the kinetics of labeling at 9 degrees C of total mitochondrial membrane, mitochondrial matrix, and cytosolic proteins, the alpha, beta, and gamma subunits of F1 ATPase, and glyceraldehyde-3-phosphate dehydrogenase. We find that none of the mitochondrial proteins show a lag in the incorporation of label compared to cytosolic proteins. These results argue against the existence in the cytosol of large pools of mitochondrial proteins awaiting transport into the organelle. Cycloheximide addition during the pulse stops [35S]methionine incorporation into mitochondrial membrane and cytosolic proteins rapidly (approximately 1 min) and with identical kinetics. Compared to cytosolic protein, however, there is a persistent incorporation of label into mitochondria after a chase with cold methionine (t1/2 approximately 1.5 min at 9 degrees C) which cannot be accounted for solely by chain completion. We conclude that this continued incorporation reflects some transport process in addition to a completion of a round of translation. When cells are labeled during a synchronous "restart" of protein synthesis, where ribosome run-off from mRNA was first induced either by incubating cells for 4 h at 0 degrees C or by treatment with 5 mM aurintricarboxylic acid, the initial rate of incorporation of label into mitochondrial protein now lags behind that of cytosolic proteins. From these results and those in the accompanying report (Ades, I.Z., and Butow, R.A. (1980) J. Biol. Chem. 255, 9918-9924) we propose that the translation of mRNA specific for mitochondrial proteins takes place in the cytoplasm and that at least a portion of the polysomes are then transported and bind to the outer mitochondrial membrane, followed by completion of translation and transfer of the newly synthesized polypeptides into the mitochondria. From a consideration of all of the available data on protein transport into mitochondria in yeast, we conclude that cytoplasmic polysomes bound to the outer mitochondrial membrane function in the transport of proteins into mitochondria by a process not necessarily mutually exclusive of post-translational transport.  相似文献   

15.
Racemization of Individual Aspartate Residues in Human Myelin Basic Protein   总被引:1,自引:0,他引:1  
Human myelin basic protein (MBP), a long-lived brain protein, undergoes gradual racemization of its amino acids, primarily aspartic acid and serine. Purified protein was treated at neutral pH with trypsin to yield peptides that were separated by HPLC using a C18 column. Twenty-nine peptides were isolated and analyzed for amino acid composition and aspartate racemization. Each aspartate and asparagine in the protein was racemized to a different extent, ranging from 2.2 to 17.1% D isomer. When the racemization was examined in terms of the beta-structure model of MBP, a correlation was observed in which six aspartate/asparagine residues assumed to be associated with myelin membrane lipids showed little racemization (2.2-4.9% D isomer), whereas five other aspartate residues were more highly racemized (9.9-17.1% D isomer). Although the observed aspartate racemization may be related to steric hindrance by neighboring residues and/or the protein secondary structure, interaction of aspartates with membrane lipids may also be a major factor. The data are compatible with a model in which each MBP molecule interacts with adjacent cytoplasmic layers of myelin membrane through a beta-sheet on one surface and loops and helices on the other surface, thereby stabilizing the myelin multilamellar structure.  相似文献   

16.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

17.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+.  相似文献   

18.
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating.  相似文献   

19.
The influence of thermal stress on the association between human erythrocyte membranes and cytosolic proteins was studied by exposing erythrocyte suspensions and whole blood to different elevated temperatures. Membranes and cytosolic proteins from unheated and heat-stressed erythrocytes were analyzed by electrophoresis, followed by mass spectrometric identification. Four major (carbonic anhydrase I, carbonic anhydrase II, peroxiredoxin VI, flavin reductase) and some minor (heat shock protein 90α, heat shock protein 70, α-enolase, peptidylprolyl cistrans isomerase A) cytosolic proteins were found to be associated with the erythrocyte membrane in response to in vitro thermal stress. Unlike the above proteins, catalase and peroxiredoxin II were associated with membranes from unheated erythrocytes, and their content increased in the membrane following heat stress. The heat-induced association of cytosolic proteins was restricted to the Triton shells (membrane skeleton/cytoskeleton). Similar results were observed when Triton shells derived from unheated erythrocyte membranes were incubated with an unheated erythrocyte cytosolic fraction at elevated temperatures. This is a first report on the association of cytosolic catalase, α-enolase, peroxiredoxin VI, peroxiredoxin II and peptidylprolyl cistrans isomerase A to the membrane or membrane skeleton of erythrocytes under heat stress. From these results, it is concluded that specific cytosolic proteins are translocated to the membrane in human erythrocytes exposed to heat stress and they may play a novel role as erythrocyte membrane protectors under stress by stabilizing the membrane skeleton through their interactions with skeletal proteins.  相似文献   

20.
The presence of free D-aspartic acid in rodents and man   总被引:4,自引:0,他引:4  
Free D-aspartic acid is present in appreciable quantities in the brain and other tissues of rodents and in human blood. In the newborn rat, the highest concentration of D-aspartic acid was found in cerebral hemispheres, where, at 164 nmol/g (8.4% of the total aspartic acid), the level of D-aspartic acid exceeds that of many essential L-amino acids. The highest ratio of D- to total aspartic acid (38%) occurred in neonatal blood cells. In the adult rat, the highest concentration was present in the pituitary gland (127 nmol/g, 3.8%). Within the central nervous system marked regional differences are present and characteristic changes with development take place. In general, the levels of D-aspartic acid fall rapidly with increasing age. In cerebral hemispheres adult values (13 nmol/g, 0.43%) are approached within one week. D-aspartic acid concentrations may also be higher in young humans since fetal blood, taken from placental cord, contains 2.6 nmol/g (4.9%) of D-aspartic acid, a value five times that of adult human blood. These distributional patterns and developmental changes may be the result of differences in the ability of various tissues to dispose of an extraneous metabolite, or, reflect alterations in a specific functional requirement for D-aspartic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号