首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O 2 and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-β-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O 2 -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive Superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria. These results are interpreted in terms of a possible lysosomal membrane permeability to O 2 causing organelle impairment by a process that, though leading to enzyme-marker leakage, does not involve lipid peroxidation.  相似文献   

3.
Myocardial xanthine oxidase/dehydrogenase   总被引:3,自引:0,他引:3  
High-energy phosphates in heart muscle deprived of oxygen are rapidly broken down to purine nucleosides and oxypurines. We studied the role of xanthine oxidase/dehydrogenase (EC 1.2.3.2/EC 1.2.1.37) in this process with novel high-pressure liquid chromatographic techniques. Under various conditions, including ischemia and anoxia, the isolated perfused rat heart released adenosine, inosine and hypoxanthine, and also substantial amounts of xanthine and urate. Allopurinol, an inhibitor of xanthine oxidase, greatly enhanced the release of hypoxanthine. From the purine release we calculated that the rat heart contained about 18 mU xanthine oxidase per g wet weight. Subsequently, we measured a xanthine oxidase activity of 9 mU/g wet wt. in rat-heart homogenate. When endogenous low molecular weight inhibitors were removed by gel-filtration, the activity increased to 31 mU/g wet wt. Rat myocardial xanthine oxidase seems to be present mainly in the dehydrogenase form, which upon storage at -20 degrees C is converted to the oxidase form.  相似文献   

4.
The participation of superoxide anion (O2-) in the intracellular indoleamine 2,3-dioxygenase activity was studied using the dispersed cell suspension of the rabbit small intestine. The dioxygenase activity was assayed by measuring [14C]formate released from DL-[ring-2-14C]tryptophan. The addition of diethyldiethiocarbamate, a superoxide dismutase inhibitor, markedly accelerated the intracellular dioxygenase activity while the superoxide dismutase activity decreased concomitantly. Furthermore, substrates of xanthine oxidase such as inosine, adenosine, and hypoxanthine also increased the dioxygenase activity in the cells, particularly in the presence of methylene blue. This increase was completely abolished by the addition of allopurinol, a specific inhibitor of xanthine oxidase. These results, taken together, indicate that the intracellular accumulation of O2- results in acceleration of the in situ dioxygenase activity, and that indoleamine 2,3-dioxygenase utilizes O2- in the isolated intestinal cells.  相似文献   

5.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

6.
We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and hypoxanthine as a substrate. Enzyme activity was localized in rat duodenum at lateral membranes and brush borders of enterocytes and in goblet cells and mucus. Hepatocytes in pericentral areas and especially sinusoidal cells showed high activity in rat liver. Xanthine oxidoreductase was also detected in epithelial cells and milk lipid globules of lactating bovine mammary gland, which is known to contain large quantities of the oxidase form of the enzyme. Chicken liver, which contains an inconvertible dehydrogenase form, also showed high activity in sinusoidal cells. Therefore, we conclude that the tetrazolium reaction demonstrates both the dehydrogenase and the oxidase form of xanthine oxidoreductase. Control activity, in the absence of hypoxanthine or in the presence of the competitive inhibitor allopurinol, was low in all tissues studied. Addition of O2 or NAD to the incubation medium did not change the specific reaction in bovine mammary gland or chicken liver, implying that the dehydrogenase and the oxidase form are not dependent on their natural electron acceptors in this tetrazolium salt reaction. We conclude that the present light microscopic method gives specific and precise localization of xanthine oxidoreductase activity in situ.  相似文献   

7.
Hyperthermia is under intensive investigation as a treatment for tumors both alone and in combination with other therapeutic agents. Hyperthermia has a profound effect on the function and structural integrity of tumor microvasculature; this has often been cited as a reason for its effectiveness in treatment of tumors. To test the role of hyperthermia in cytotoxic effects of active oxygen species, Chinese hamster, V79, and bovine endothelial cells were treated by the active oxygens, O not equal to 2 and H2O2, generated from the hypoxanthine/purine and xanthine oxidase reactions. It was found that cytotoxicity to V79 cells depends on the concentrations of purine and xanthine oxidase. A high level of cytotoxicity may be initiated in hyperthermia-treated tumors because high xanthine oxidase activity is known to be associated with tumors and endothelial cells, and degradation processes produce high concentrations of xanthine oxidase substrates in tumors. Since the cytotoxic effect can be reduced by the xanthine oxidase inhibitor, allopurinol, and the H2O2 removal enzyme, catalase, the cytotoxic effect in this experimental system is dependent on xanthine oxidase and H2O2. Adding erythrocytes at the same time as purine and xanthine oxidase could also prevent the cytotoxicity. Elevated temperatures stimulated the reaction of purine and xanthine oxidase and resulted in an increased cytotoxic effect. A similar effect is observed in growth inhibition and colony formation in endothelial cells without adding xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The ability of the superoxide radical (SOR) generated by xanthine oxidase to activate phospholipase A2 (PLA2) was examined in microsomes prepared from luteinized rat ovaries. Treatment of microsomes with xanthine oxidase resulted in a rapid burst in SOR formation followed by an increase in PLA2 activity. Stimulation of PLA2 activity was dose related and similar in microsomes prepared from control or prostaglandin F2 alpha (PGF2 alpha)-treated rats. Activation was inhibited by the antioxidants, vitamin E and nordihydroguaiaretic acid, and by superoxide dismutase and catalase, which metabolize SOR and H2O2 to remove reactive oxygen species from the cell. The stimulation of PLA2 activity by xanthine oxidase was dependent upon the addition of calcium ions, and it was highest in samples in which cytosol was added to membranes. These results indicate that the SOR and/or H2O2 may mediate PLA2 activation, which may be involved in the luteolytic process.  相似文献   

9.
Uroporphyrin I, haematoporphyrin and haematoporphyrin derivative had no effect on O2-. generation during oxidation of hypoxanthine by xanthine oxidase and on the formation of hydroxyl radicals (OH.) in the hypoxanthine/xanthine oxidase/Fe3+-EDTA/deoxyribose system. On the other hand, these porphyrins strongly inhibited O2-. formation in a horseradish peroxidase/H2O2/NADPH mixture, whereas they augmented OH. generation in this system after addition of Fe3+-EDTA. Experimental evidence suggests that these observations should be ascribed to the formation of a porphyrin anion radical in the horseradish peroxidase/NADPH system. The formation of this anion radical was confirmed by e.s.r. spectroscopy. This radical is apparently unable to reduce cytochrome c, but it can replace O2-. in the OH.-generating Haber-Weiss reaction.  相似文献   

10.
We directly measured the activity of the enzymes xanthine oxidase and xanthine dehydrogenase in rabbit and rat hearts, using a sensitive radiochemical assay. Neither xanthine oxidase activity nor xanthine dehydrogenase activity was detected in the rabbit heart. In the rat heart, xanthine oxidase activity was 9.1 +/- 0.5 mIU per gram wet weight and xanthine dehydrogenase activity was 53.0 +/- 1.9 mIU per gram wet weight. These results argue against the involvement of the xanthine oxidase/xanthine dehydrogenase system as a mechanism of tissue injury in the rabbit heart, and suggest that the ability of allopurinol to protect the rabbit heart against hypoxic or ischemic damage must be due to a mechanism other than inhibition of these enzymes.  相似文献   

11.
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.  相似文献   

12.
Xanthine oxidase is a key enzyme that catalyses hypoxanthine and xanthine to uric acid and the overproduction of uric acid will lead to hyperuricemia which is an important cause of gout. In the present study, three chalcone derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Of the compounds, only Compound 1, 3,5,2′,4′-tetrahydroxychalcone, exhibited a significant inhibitory activity on xanthine oxidase with an IC50 value of 22.5 μM. Lineweaver–Burk transformation of the inhibition kinetics data demonstrated that it was a competitive inhibitor of xanthine oxidase and Ki value was 17.4 μM. In vivo, intragastric administration of Compound 1 was able to significantly reduce serum uric acid levels and inhibited hepatic xanthine oxidase activities of hyperuricemic mice in a dose-dependent manner. Acute toxicity study in mice showed that Compound 1 was very safe at a dose of up to 5 g/kg. These results suggest that Compound 1 is a novel competitive xanthine oxidase inhibitor and is worthy of further development.  相似文献   

13.
In this paper, we demonstrated that bovine serum albumin (BSA) stabilized Au clusters exhibited highly intrinsic peroxidase-like activity. Unlike nature enzymes, the BSA-Au clusters have strong robustness and can be used over a wide range of pH and temperature. Because of ultra-small size, good stability and high biocompatibility in water solution compare with other kinds of nanoparticles as peroxidase mimetics, such as Fe(3)O(4), FeS or graphene oxide, it is more competent for bioanalysis. Furthermore, we make use of the novel properties of BSA-Au clusters as peroxidase mimetics to detect H(2)O(2). The as-prepared BSA-Au clusters were used to catalyze the oxidation of a peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) by H(2)O(2) to the oxidized colored product, and which provides a colorimetric detection of H(2)O(2). As low as 2.0 × 10(-8)M H(2)O(2) could be detected with a linear range from 5.0 × 10(-7) to 2.0 × 10(-5)M via this method. More importantly, a sensitive and selective method for xanthine detection was developed using xanthine oxidase (XOD) and the as-prepared BSA-Au clusters. The detection limit of this assay for xanthine was 5 × 10(-7)M and the proposed method was successfully applied for the determination of xanthine in urine and human serum sample.  相似文献   

14.
Cutaneous and mucous epithelia of various organs of laboratory rodents were analysed histochemically for reactive oxygen species (ROS)-generating oxidases using cerium methods. High activities of xanthine oxidase and also superoxide dismutase were present in orthokeratotic stratified squamous epithelia of skin, lips, esophagus and forestomach and parakeratotic keratinizing stratified epithelia of vagina, tongue and penis. Moreover, activity was found in simple epithelium of the uterus and intestine of rats, mice and guinea-pigs. Moderate activities of monoamine oxidase and D-amino acid oxidase were only seen in enterocytes of large and small intestine, whereas alpha-hydroxy acid oxidase could not be detected at all. With the use of specific inhibitors for superoxide anions-producing xanthine oxidase and H2O2-generating superoxide dismutase it was shown that epithelial cells of all studied external and internal surface epithelia contain a highly effective xanthine oxidase-superoxide dismutase system. It is hypothesized that this system might have a general microbicidal function and might play a special role in tumor promotion of the skin.  相似文献   

15.
Quantification of intracellular and extracellular levels and production rates of reactive oxygen species is crucial to understanding their contribution to tissue pathophysiology. We measured basal rates of oxidant production and the activity of xanthine oxidase, proposed to be a key source of O2- and H2O2, in endothelial cells. Then we examined the influence of tumor necrosis factor-alpha and lipopolysaccharide on endothelial cell oxidant metabolism, in response to the proposal that these inflammatory mediators initiate vascular injury in part by stimulating endothelial xanthine oxidase-mediated production of O2- and H2O2. We determined a basal intracellular H2O2 concentration of 32.8 +/- 10.7 pM in cultured bovine aortic endothelial cells by kinetic analysis of aminotriazole-mediated inactivation of endogenous catalase. Catalase activity was 5.72 +/- 1.61 U/mg cell protein and glutathione peroxidase activity was much lower, 8.13 +/- 3.79 mU/mg protein. Only 0.48 +/- 0.18% of total glucose metabolism occurred via the pentose phosphate pathway. The rate of extracellular H2O2 release was 75 +/- 12 pmol.min-1.mg cell protein-1. Intracellular xanthine dehydrogenase/oxidase activity determined by pterin oxidation was 2.32 +/- 0.75 microU/mg with 47.1 +/- 11.7% in the oxidase form. Intracellular purine levels of 1.19 +/- 1.04 nmol hypoxanthine/mg protein, 0.13 +/- 0.17 nmol xanthine/mg protein, and undetectable uric acid were consistent with a low activity of xanthine dehydrogenase/oxidase. Exposure of endothelial cells to 1000 U/ml tumor necrosis factor (TNF) or 1 microgram/ml lipopolysaccharide (LPS) for 1-12 h did not alter basal endothelial cell oxidant production or xanthine dehydrogenase/oxidase activity. These results do not support a casual role for H2O2 in the direct endothelial toxicity of TNF and LPS.  相似文献   

16.
A new spectrophotometric assay method of xanthine oxidase applicable to the crude tissue homogenate containing uricase was presented in this paper. By adding potassium 2,4-dihydroxy-6-carboxy-1,3,5-triazine (potassium oxonate) (0.1 mm) to the crude xanthine oxidase reaction system, uric acid was stoichiometrically formed from xanthine and detectable allantoin was not formed and the formation of uric acid was not influenced by uricase.Distribution of xanthine oxidase in various rat tissues was measured by this method, and it was shown that the activity was high in the liver, the small intestine, and the spleen. Uricase was shown to distribute mainly in the liver of rats.  相似文献   

17.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

18.
19.
It was learned the regulation of xanthine oxidase activity from rat liver in the partly purified prepared by ascorbic acid, glutathione-SH, dithiothreitol, cysteine++ and hydrocortisone++. It was shown that ascorbic acid glutathione-SH, dithiothreitol, and cysteine++ can be activators and uncompetitor inhibitors of xanthine oxidase in dependence from concentration. As far as hydrocortisone is concerned, it is a powerful uncompetitor inhibitor of xanthine oxidase, that is bind with it. It was considered the mechanism of activation and inhibition of xanthine oxidase by these reductors-antioxidants.  相似文献   

20.
1. The survival of mammalian epithelial cells exposed in vitro to the xanthine/xanthine oxidase system in phosphate-buffered saline (PBS) or serum-containing medium (SCMEM) was investigated. 2. The cytotoxic effect observed depended on the composition of the medium in which the enzymic reaction was carried out; a surviving fraction of 5 x 10(-5) was found for cells exposed in PBS and 5.2 x 10(-1) for those in SCMEM. 3. The cytotoxic product(s) formed by the xanthine/xanthine oxidase system was relatively stable in PBS; survival of cells incubated after completion of the enzymic reaction was always less than that found for cells exposed during the reaction in the same system. 4. Superoxide dismutase or mannitol present during the enzymic reaction did not inhibit the cytotoxic effect. 5. NaN3 (a single-oxygen quencher and a catalase inhibitor) added to the system in SCMEM caused a reduction in survival to the level observed for cells exposed to the enzymic reaction in PBS. 6. Catalase completely protected cells, but no protection was observed when both catalase and NaN3 were present in the reaction mixture. 7. A similar cytotoxic effect was produced when cells were treated with H2O2 alone. 8. The rate of H2O2 decomposition in medium was accelerated by the presence of serum, but this was completely inhibited by NaN3. 9. It is concluded that H2O2 is the major cytotoxic product formed by the xanthine/xanthine oxidase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号