首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
U6 snRNA sequences required for assembly of U4/U6 snRNP and splicing complexes were determined by in vitro reconstitution of snRNPs. Both mutagenesis and chemical modification/interference assays identify a U6 snRNA domain required for U4/U6 snRNP formation. The results support the existence of a U4/U6 snRNA interaction domain previously proposed on the basis of phylogenetic evidence. In addition, two short U6 snRNA regions flanking the U4/U6 interaction domain are essential to assemble the U4/U6 snRNP into splicing complexes. These two regions may represent binding sites for splicing factors or may facilitate the formation of an alternative U6 snRNA secondary structure during spliceosome assembly.  相似文献   

2.
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which is essential, but not sufficient for RNA binding. The 15.5kD protein binding site on the U4 snRNA consists of an internal purine-rich loop flanked by the stem of the 5' stem-loop and a stem comprising two base pairs. Addition of an RNA oligonucleotide comprising the 5' stem-loop of U4 snRNA (U4SL) to an in vitro splicing reaction blocked the first step of pre-mRNA splicing. Interestingly, spliceosomal C complex formation was inhibited while B complexes accumulated. This indicates that the 15.5kD protein, and/or additional U4 snRNP proteins associated with it, play an important role in the late stage of spliceosome assembly, prior to step I of splicing catalysis. Our finding that the 15.5kD protein also efficiently binds to the 5' stem-loop of U4atac snRNA indicates that it may be shared by the [U4atac/U6atac.U5] tri-snRNP of the minor U12-type spliceosome.  相似文献   

3.
R K Alvi  M Lund    R T Okeefe 《RNA (New York, N.Y.)》2001,7(7):1013-1023
Pre-messenger RNA splicing is a two-step process by which introns are removed and exons joined together. In yeast, the U5 snRNA loop 1 interacts with the 5' exon before the first step of splicing and with the 5' and 3' exons before the second step. In vitro studies revealed that yeast U5 loop 1 is not required for the first step of splicing but is essential for holding the 5' and 3' exons for ligation during the second step. It is critical, therefore, that loop 1 contacts the 5' exon before the first step of splicing to hold this exon following cleavage from the pre-mRNA. At present it is not known how U5 loop 1 is positioned on the 5' exon prior to the first step of splicing. To address this question, we have used site-specific photoactivated crosslinking in yeast spliceosomes to investigate the interaction of U5 loop 1 with the pre-mRNA prior to the first step of splicing. We have found that the highly conserved uridines in loop 1 make ATP-dependent contacts with an approximately 8-nt region at the 5' splice site that includes the invariant GU. These interactions are dependent on functional U2 and U6 snRNAs. Our results support a model where U5 snRNA loop 1 interacts with the 5' exon in two steps during its targeting to the 5' splice site.  相似文献   

4.
To investigate the function of the U5 small nuclear ribonucleoprotein (snRNP) in pre-mRNA splicing, we have screened for factors that genetically interact with Saccharomyces cerevisiae U5 snRNA. We isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of the U5 snRNA and named these genes SLU, for synergistically lethal with U5 snRNA. SLU1 and SLU2 are essential for the first catalytic step of splicing, while SLU7 and SLU4 (an allele of PRP17 [U. Vijayraghavan, M. Company, and J. Abelson, Genes Dev. 3:1206-1216, 1989]) are required only for the second step of splicing. Furthermore, slu4-1 and slu7-1 are lethal in combination with mutations in PRP16 and PRP18, which also function in the second step, but not with mutations in factors required for the first catalytic step, such as PRP8 and PRP4. We infer from these data that SLU4, SLU7, PRP18, PRP16, and the U5 snRNA interact functionally and that a major role of the U5 snRNP is to coordinate a set of factors that are required for the completion of the second catalytic step of splicing.  相似文献   

5.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

6.
Roles of U4 and U6 snRNAs in the assembly of splicing complexes.   总被引:14,自引:3,他引:11       下载免费PDF全文
A series of U4 and U6 snRNA mutants was analysed in Xenopus oocytes to determine whether they block splicing complex assembly or splicing itself. All the U4 and U6 mutants found to be inactive in splicing complementation resulted in defects in assembly of either U4/U6 snRNP or of splicing complexes. No mutants were found to separate the entry of U5 and U6 snRNAs into splicing complexes and neither of these RNAs was able to associate with the pre-mRNA in the absence of U4. In the absence of U6 snRNA, however, U4 entered a complex containing pre-mRNA as well as the U1 and U2 snRNAs. U6 nucleotides whose mutation resulted in specific blockage of the second step of splicing in Saccharomyces cerevisiae are shown not to be essential for splicing in the oocyte assay. The results are discussed in terms of the roles of U4 and U6 in the assembly and catalytic steps of the splicing process.  相似文献   

7.
J Xie  K Beickman  E Otte    B C Rymond 《The EMBO journal》1998,17(10):2938-2946
The elaborate and energy-intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre-mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre-mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5' splice-site cleavage. In contrast, Prp38p-defective spliceosomes retain U4 snRNA bound to its U6 snRNA base-pairing partner. Prp38p is the first tri-snRNP-specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome.  相似文献   

8.
9.
10.
The U6 spliceosomal snRNA forms an intramolecular stem-loop structure during spliceosome assembly that is required for splicing and is proposed to be at or near the catalytic center of the spliceosome. U6atac snRNA, the analog of U6 snRNA used in the U12-dependent splicing of the minor class of spliceosomal introns, contains a similar stem-loop whose structure but not sequence is conserved between humans and plants. To determine if the U6 and U6atac stem-loops are functionally analogous, the stem-loops from human and budding yeast U6 snRNAs were substituted for the U6atac snRNA structure and tested in an in vivo genetic suppression assay. Both chimeric U6/U6atac snRNA constructs were active for splicing in vivo. In contrast, several mutations of the native U6atac stem-loop that either delete putatively unpaired residues or disrupt the putative stem regions were inactive for splicing. Compensatory mutations that are expected to restore base pairing within the stem regions restored splicing activity. However, other mutants that retained base pairing potential were inactive, suggesting that functional groups within the stem regions may contribute to function. These results show that the U6atac snRNA stem-loop structure is required for in vivo splicing within the U12-dependent spliceosome and that its role is likely to be similar to that of the U6 snRNA intramolecular stem-loop.  相似文献   

11.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

12.
A photoactivatable azidophenacyl group has been introduced into seven positions in the backbone of the 11 nucleotide invariant loop of U5 snRNA. By reconstituting depleted splicing extracts with reassembled U5 snRNP particles, molecular neighbors were assessed as a function of splicing. All cross-links to the pre-mRNA mapped to the second nucleotide downstream of the 5' splice site, and formed most readily when the reactive group was at the phosphate between U5 positions 42 and 43 or 43 and 44. Both their kinetics of appearance and sensitivity to oligonucleotide inhibition suggest that these cross-links capture a late state in spliceosome assembly occurring immediately prior to the first step. A later forming, second cross-linked species is a splicing product of the first cross-link, suggesting that the U5 loop backbone maintains this position through the first step. The proximity of the U5 loop backbone to the intron's 5' end provides sufficient restrictions to develop a three-dimensional model for the arrangement of RNA components in the spliceosome during the first step of pre-mRNA splicing.  相似文献   

13.
Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.  相似文献   

14.
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5′ splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5′ exon adjacent to the 5′ splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5′ exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5′ splice site base pairing. In contrast, U5 snRNA interactions with the 5′ exon of the pre-mRNA progressively shift towards the 5′ end of U5 loop 1 as the crosslinking group is placed further from the 5′ splice site, with only interactions closest to the 5′ splice site persisting to the 5′ exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5′ exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5′ splice site recognition prior to the first step of pre-mRNA splicing.  相似文献   

15.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

16.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

17.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

18.
Splicing of mRNA precursors occurs in a massive structure known as the spliceosome and requires the function of several small nuclear RNAs (snRNAs). A number of studies have suggested potentially important roles for two snRNAs, U2 and U6, in splicing catalysis. These two RNAs interact extensively with each other, as well as with the pre-mRNA, and possible similarities with catalytic RNAs have been noted. An important feature of the U2-U6 complex is an intramolecular helix in U6, which forms in conjunction with activation of the spliceosome. Here we describe a detailed genetic analysis of residues that make up this helix in human U6 snRNA, using an in vivo assay in which splicing of a test pre-mRNA is dependent on exogenous U6 snRNA. Our results show that many, but not all, positions tested are sensitive to mutation. Unexpectedly, base pairing is fully compatible with function at all positions, and at many is both necessary and sufficient. For example, conversion of two noncanonical A-C pairs to G-C pairs did not affect splicing, nor did conversion of an A-G to C-G. Extension of the helix by a base pair was also tolerated, provided that base pairing was maintained. Most notable was the behavior of a bulged U (U74), which has been suggested previously to be of particular importance. Although U74 was sensitive to substitution or deletion, incorporation into the helix by insertion of an A across from it was without effect, even in the context of a second helix-stabilizing mutation. We discuss these results in terms of possible mechanisms by which U6 snRNA might function in splicing catalysis.  相似文献   

19.
N Hernandez 《The EMBO journal》1985,4(7):1827-1837
U1 is a small non-polyadenylated nuclear RNA that is transcribed by RNA polymerase II and is known to play a role in mRNA splicing. The mature 3' end of U1 snRNA is formed in at least two steps. The first step generates precursors of U1 RNA with a few extra nucleotides at the 3' end; in the second step, these precursors are shortened to mature U1 RNA. Here, I have determined the sequences required for the first step. Human U1 genes with various deletions and substitutions near the 3' end of the coding region were constructed and introduced into HeLa cells by DNA transfection. The structure of the RNA synthesized during transient expression of the exogenous U1 gene was analyzed by S1 mapping. The results show that a 13 nucleotide sequence located downstream from the U1 coding region and conserved among U1, U2 and U3 genes of different species is the only sequence required to direct the first step in the formation of the 3' end of U1 snRNA.  相似文献   

20.
Both the Prp18 protein and the U5 snRNA function in the second step of pre-mRNA splicing. We identified suppressors of mutant prp18 alleles in the gene for the U5 snRNA (SNR7). The suppressors' U5 snRNAs have either a U4-to-A or an A8-to-C mutation in the evolutionarily invariant loop 1 of U5. Suppression is specific for prp18 alleles that encode proteins with mutations in a highly conserved region of Prp18 which forms an unstructured loop in crystals of Prp18. The snr7 suppressors partly restored the pre-mRNA splicing activity that was lost in the prp18 mutants. The close functional relationship of Prp18 and U5 is emphasized by the finding that two snr7 alleles, U5A and U6A, are dominant synthetic lethal with prp18 alleles. Our results support the idea that Prp18 and the U5 snRNA act in concert during the second step of pre-mRNA splicing and suggest a model in which the conserved loop of Prp18 acts to stabilize the interaction of loop 1 of the U5 snRNA with the splicing intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号