首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish encounter harsh ionic/osmotic gradients on their aquatic environments, and the mechanisms through which they maintain internal homeostasis are more challenging compared with those of terrestrial vertebrates. Gills are one of the major organs conducting the internal ionic and acid-base regulation, with specialized ionocytes as the major cells carrying out active transport of ions. Exploring the iono/osmoregulatory mechanisms in fish gills, extensive literature proposed several models, with many conflicting or unsolved issues. Recent studies emerged, shedding light on these issues with new opened windows on other aspects, on account of available advanced molecular/cellular physiological approaches and animal models. Respective types of ionocytes and ion transporters, and the relevant regulators for the mechanisms of NaCl secretion, Na(+) uptake/acid secretion/NH(4)(+) excretion, Ca(2+) uptake, and Cl(-) uptake/base secretion, were identified and functionally characterized. These new ideas broadened our understanding of the molecular/cellular mechanisms behind the functional modification/regulation of fish gill ion transport during acute and long-term acclimation to environmental challenges. Moreover, a model for the systematic and local carbohydrate energy supply to gill ionocytes during these acclimation processes was also proposed. These provide powerful platforms to precisely study transport pathways and functional regulation of specific ions, transporters, and ionocytes; however, very few model species were established so far, whereas more efforts are needed in other species.  相似文献   

2.
Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.  相似文献   

3.
Acid-base regulation in fishes: cellular and molecular mechanisms   总被引:6,自引:0,他引:6  
The mechanisms underlying acid-base transfers across the branchial epithelium of fishes have been studied for more than 70 years. These animals are able to compensate for changes to internal pH following a wide range of acid-base challenges, and the gill epithelium is the primary site of acid-base transfers to the water. This paper reviews recent molecular, immunohistochemical, and functional studies that have begun to define the protein transporters involved in the acid-base relevant ion transfers. Both Na(+)/H(+) exchange (NHE) and vacuolar-type H(+)-ATPase transport H(+) from the fish to the environment. While NHEs have been thought to carry out this function mainly in seawater-adapted animals, these proteins have now been localized to mitochondrial-rich cells in the gill epithelium of both fresh and saltwater-adapted fishes. NHEs have been found in the gill epithelium of elasmobranchs, teleosts, and an agnathan. In several species, apical isoforms (NHE2 and NHE3) appear to be up-regulated following acidosis. In freshwater teleosts, H(+)-ATPase drives H(+) excretion and is indirectly coupled to Na(+) uptake (via Na(+) channels). It has been localized to respiratory pavement cells and chloride cells of the gill epithelium. In the marine elasmobranch, both branchial NHE and H(+)-ATPase have been identified, suggesting that a combination of these mechanisms may be utilized by marine elasmobranchs for acid-base regulation. An apically located Cl(-)/HCO(3)(-) anion exchanger in chloride cells may be responsible for base excretion in fresh and seawater-adapted fishes. While only a few species have been examined to date, new molecular approaches applied to a wider range of fishes will continue to improve our understanding of the roles of the various gill membrane transport processes in acid-base balance.  相似文献   

4.
The effects of ion substitutions on the Cl- secretion rate and tissue conductance of isolated short-circuited opercular epithelia from sea-water-adapted Fundulus heteroclitus were investigated. Serosal Na+ substitution had the same effect on the Cl- secretion rate that serosal Cl- substitution had on the active component of the Cl- efflux. This similarity indicated a 1:1 Na-Cl requirement for active Cl- secretion across this epithelium, which supports the proposal of a coupled NaCl uptake mechanism at the serosal membrane of Cl- secretory epithelia. Mucosal Na+ and Cl- substitutions appeared to inhibit completely the active Cl- secretory flux. The reductions in the tissue conductance with mucosal ion substitutions suggested that this effect can be attributed to a blocking of the apical membrane Cl- conductance. These mucosal ion effects suggested a possible direct regulatory influence of the external salinity on the Cl- secretion rate and tissue conductance, which provide alternative explanations for observations with the teleost gill epithelium.  相似文献   

5.
Despite all the efforts and technological advances during the last few decades, the cellular mechanisms for branchial chloride uptake in freshwater (FW) fish are still unclear. Although a tight 1 : 1 link with HCO-3 secretion has been established, not much is known about the identity of the ion-transporting proteins involved or the energizing steps that allow for the inward transport of Cl- against the concentration gradient. We propose a new model for Cl- uptake in FW fish whereby the combined action of an apical anion exchanger, cytoplasmic carbonic anhydrase, and basolateral V-type H+ -ATPase creates a local [HCO-3] high enough to energize Cl- uptake. Our model is based on analyses of structure-function relationships, reinterpretation of previous results, and novel observations about gill cell subtypes and immunolocalization of the V-H+ -ATPase.  相似文献   

6.
This review examines the recent advances in our understanding of the mechanisms of ion transport and acid-base regulation in the freshwater fish gill. The application of a combination of morphological, immunocytochemical and biochemical techniques has yielded considerable insight into the field. An important mechanism for regulation of Cl- uptake/base excretion is by morphological modification of the gill epithelium. During acidosis, the chloride cell associated Cl-/HCO3- exchanger is effectively removed from the apical epithelium because of a covering by adjacent pavement cells; this mechanism reduces base excretion and contributes to the compensation of the acidosis. In addition, acidosis induces changes in both the surface structure and ultrastructure of pavement cells. Evidence is accumulating to support the hypothesis that Na+ uptake/H+ excretion is accomplished by the pavement cell. Further, specific localization of a V-type H+-ATPase on the pavement cell epithelium and an increased expression during acidosis provides support for the model originally proposed, that this exchange is accomplished by an electrochemically coupled H+-ATPase/Na+ channel mechanism.  相似文献   

7.
In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.  相似文献   

8.
Neltenexine has been applied to human lung diseases such as chronic obstructive pulmonary disease (COPD) as a mucolytic agent. However, we have no information on the neltenexine action in bronchial epithelial cells. We studied the neltenexine action on the ion transport in human submucosal serous Calu-3 cells. Under a hyper-secreting condition caused by terbutaline (a beta2-adrenergic agonist), neltenexine diminished anion secretion by inhibiting the Cl- and HCO3- uptake via Na+/K+/2Cl- cotransporter and Na+/HCO3- cotransporter without blockade of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, and also diminished anion secretion via stimulation of Cl-/HCO3- exchanger, which facilitates the extrusion of more CFTR-permeant anion, Cl-, with the uptake of less CFTR-permeant anion, HCO3-. Thus, neltenexine reduced the hyper-secretion to keep an appropriate fluid level in the airway, providing a possibility that neltenexine can be an effective drug in airway obstructive diseases by decreasing the airway resistance under a hyper-secreting condition.  相似文献   

9.
Two methods are commonly used for the determination of transbranchial net fluxes of Na+ and Cl-: direct analysis of changes in ion concentrations in the external medium using flame spectrophotometry or titration (net flux method), and measurement of unidirectional ion fluxes by means of radioactive tracers (tracer method). When we applied both methods in the same preparation, the isolated perfused posterior gill of freshwater-acclimated Eriocheir sinensis, to determine net fluxes of Cl-, the results differed substantially. In artificial fresh water (AFW) containing NaCl, the net flux method yielded a net uptake, but the tracer method showed a net efflux of Cl-. The net uptake of Cl- was abolished in Na(+)-free AFW indicating that Cl- uptake is coupled with the uptake of Na+. Applying the tracer method, net efflux of Cl- remained almost unchanged in Na(+)-free AFW. This suggests the opposite mechanism, i.e. uncoupled uptake of Na+ and Cl-. The discrepancy in the results obviously depends on the method employed. Since the data obtained with the net flux method explain the osmoregulatory performance of crabs living in fresh water, we consider this method as appropriate for determining net transbranchial ion fluxes.  相似文献   

10.
Taurine, a sulfated beta-amino acid, is conditionally essential during development. A maternal supply of taurine is necessary for normal fetal growth and neurologic development, suggesting the importance of efficient placental transfer. Uptake by the brush-border membrane (BBM) in several other tissues has been shown to be via a selective Na(+)-dependent carrier mechanism which also has a specific anion requirement. Using BBM vesicles purified from the human placenta, we have confirmed the presence of Na(+)-dependent, carrier-mediated taurine transport with an apparent Km of 4.00 +/- 0.22 microM and a Vmax of 11.72-0.36 pmol mg-1 protein 20 s-1. Anion dependence was examined under voltage-clamped conditions, in order to minimize the contribution of membrane potential to transport. Uptake was significantly reduced when anions such as thiocyanate, gluconate, or nitrate were substituted for Cl-. In addition, a Cl(-)-gradient alone (under Na(+)-equilibrated conditions) could energize uphill transport as evidenced by accelerated uptake (3.13 +/- 0.8 pmol mg-1 protein 20 s-1) and an overshoot compared to Na+, Cl- equilibrated conditions (0.60 +/- 0.06 pmol mg-1 protein 20 s-1). A Cl(-)-gradient (Na(+)-equilibrated) also stimulated uptake of [3H]taurine against its concentration gradient. Analysis of uptake in the presence of varying concentrations of external Cl- suggested that 1 Cl- ion is involved in Na+/taurine cotransport. We conclude that Na(+)-dependent taurine uptake in the placental BBM has a selective anion requirement for optimum transport. This process is electrogenic and involves a stoichiometry of 2:1:1 for Na+/Cl-/taurine symport.  相似文献   

11.
The response of rainbow trout Na+ and Cl- uptake systems to acute acidosis was tested by slow infusion of lactic acid into anaesthetized animals. Depression of blood pH by 0-4 pH unit had no effect on influx rates for either ion, and we conclude that gill ion uptake systems do not respond rapidly to blood pH changes.  相似文献   

12.
The Ehrlich ascites tumor cell has been used as a model of an unspecialized mammalian cell, in an attempt to disclose the mechanisms involved in the regulation of cellular water and salt content. In hypotonic medium Ehrlich cells initially swell as nearly perfect osmometers, but subsequently recover their volume within about 10 min with an associated net loss of KCl, amino acids, taurine and cell water. The net loss of KCl takes place mainly via separate, conductive K+ and Cl- transport pathways, and the net loss of taurine through a passive leak pathway. Ca2+ and calmodulin appear to be involved in the activation of the K+ and Cl- channels, as well as the taurine leak pathway. In hypertonic medium Ehrlich cells initially shrink as osmometers, but subsequently recover their volume with an associated net uptake of KCl and water. In this case, the net uptake of KCl is the result of the activation of an electroneutral, Na+- and Cl- -dependent cotransport system with subsequent replacement of cellular Na+ by extracellular K+ via the Na+/K+ pump. In the present review we describe the ion and taurine transporting systems which have been identified in the plasma membrane of the Ehrlich ascites tumor cell. We have emphasized the selectivity of these transport pathways and their activation mechanisms. Finally, we propose a model for the activation of the conductive K+ and Cl- transport pathways in Ehrlich cells which includes Ca2+, leukotrienes, and inositol phosphate as intracellular second messengers.  相似文献   

13.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

14.
15.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

16.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

17.
The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.  相似文献   

18.
This review examines the branchial mechanisms utilized by freshwater fish to regulate internal acid-base status and presents a model to explain the underlying basis of the compensatory processes. Rainbow trout, Oncorhynchus mykiss, and brown bullhead, Ictalurus nebulosus, were examined under a variety of experimental treatments which induced respiratory and metabolic acid-base disturbances. Acid-base regulation was achieved by appropriate adjustments of Na+ and Cl- net fluxes across the gills which, in turn, were accomplished by variable contributions of three different branchial mechanisms: 1) differential changes in Na+ and Cl- diffusive effluxes, 2) changes in internal substrate (H+, HCO3-) availability, and 3) morphological adjustments to the gill epithelium. Differential diffusive efflux of Na+ over Cl- was involved only during periods of metabolic alkalosis. The importance of internal substrate availability was demonstrated using a two-substrate model. According to the model, ionic flux rates (J(in)Cl-, J(in)Na+) are determined not only by the concentration of the external ion (Na+, Cl-) but also by the concentration of the internal counterion (H+, HCO3-). This system provides for an "automatic negative feedback" to aid in the compensation of metabolic acid-base disturbances. Morphological alteration of the gill epithelia and the associated regulation of chloride cell (CC) fractional area is an essential third mechanism which is especially important during respiratory acid-base disturbances. Specifically, fish vary the availability of the CC associated Cl-/HCO3- exchange mechanism by physical covering/uncovering of CCs by adjacent pavement cells.  相似文献   

19.
It is not clear how and whether terrestrial amphibians handle NaCl transport in the distal nephron. Therefore, we studied ion transport in isolated perfused collecting tubules and ducts from toad, Bufo bufo, by means of microelectrodes. No qualitative difference in basolateral cell membrane potential (Vbl) was observed between tubules and ducts in response to ion substitutions, inhibitor and agonist applications. Cl- substitution experiments indicated a small Cl- conductance in the basolateral membrane. The apical membrane did not have a significant Cl- conductance. Luminal [Na+] steps and amiloride application showed a small apical Na+ conductance. Arginine vasotocin depolarized Vbl. The small apical Na+ conductance indicates that the collecting duct system contributes little to NaCl reabsorption when compared to aquatic amphibians. In contrast, Vbl rapidly depolarized upon lowering of [Na+] in the bath, demonstrating the presence of a Na+-coupled anion transporter. [HCO3-] steps revealed that this transporter is not a Na+-HCO3- cotransporter. Together, our results indicate that a major task of the collecting duct system in B. bufo is not conductive NaCl transport but rather K+ secretion, as shown by our previous studies. Moreover, our results indicate the presence of a novel basolateral Na+-coupled anion transporter, the identity of which remains to be elucidated.  相似文献   

20.
Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis   总被引:1,自引:0,他引:1  
Ionic regulation by the gills of the freshwater-adapted Chinese crab, Eriocheir sinensis, was examined. The balance of uptake and loss of NaCl in crabs living in freshwater was established. Urine production was measured directly by cannulating the nephropores. Daily urinary loss of Na+ is equivalent to 16% of the haemolymph Na+ content and is substantially higher than that based on data from indirect measurements reported in the literature. Weight and area of anterior and posterior gills are proportional to body weight. The role of the gills in compensating urinary loss by uptake was determined by analysing changes in Na+ and Cl- concentrations in the external medium in which isolated perfused gills were suspended. In posterior gills, salt loss is quantitatively balanced by NaCl net uptake from an external concentration of 1.3 mmol l(-1) NaCl upwards. The transport constant (Kt) for half maximum saturation of net uptake and saturation of NaCl uptake are 1.5 mmol l(-1) and 4 mmol l(-1), respectively. In contrast to previous studies in which tracer fluxes or transepithelial short-circuit currents were determined, our method of direct ion determination shows that no net uptake of Na+ or Cl- occurs in posterior gills in the absence of the respective counter ion, or when uptake of one ion is blocked by a specific inhibitor. Net uptake of Na+ and Cl- was about equal. We conclude that the uptake of the two ions is coupled. The properties of the branchial ion uptake of E. sinensis correlates with the distribution of this crab in river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号