首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa coexpresses two distinct lipopolysaccharide (LPS) molecules known as A band and B band. B band is the serospecific LPS, while A band is the common LPS antigen composed of a D-rhamnose O-polysaccharide region. An operon containing eight genes responsible for A-band polysaccharide biosynthesis and export has recently been identified and characterized (H. L. Rocchetta, L. L. Burrows, J. C. Pacan, and J. S. Lam, unpublished data; H. L. Rocchetta, J. C. Pacan, and J. S. Lam, unpublished data). In this study, we report the characterization of two genes within the cluster, designated wzm and wzt. The Wzm and Wzt proteins have predicted sizes of 29.5 and 47.2 kDa, respectively, and are homologous to a number of proteins that comprise ABC (ATP-binding cassette) transport systems. Wzm is an integral membrane protein with six potential membrane-spanning domains, while Wzt is an ATP-binding protein containing a highly conserved ATP-binding motif. Chromosomal wzm and wzt mutants were generated by using a gene replacement strategy in P. aeruginosa PAO1 (serotype 05). Western blot analysis and immunoelectron microscopy using A-band- and B-band-specific monoclonal antibodies demonstrated that the wzm and wzt mutants were able to synthesize A-band polysaccharide, although transport of the polymer to the cell surface was inhibited. The inability of the polymer to cross the inner membrane resulted in the accumulation of cytoplasmic A-band polysaccharide. This A-band polysaccharide is likely linked to a carrier lipid molecule with a phenol-labile linkage. Chromosomal mutations in wzm and wzt were found to have no effect on B-band LPS synthesis. Rather, immunoelectron microscopy revealed that the presence of A-band LPS may influence the arrangement of B-band LPS on the cell surface. These results demonstrate that A-band and B-band O-antigen assembly processes follow two distinct pathways, with the former requiring an ABC transport system for cell surface expression.  相似文献   

2.
The effect of locust bean gum, a galactomannan, with different molecular weights on the microstructure and viscoelastic properties of heat-induced whey protein gels has been studied using confocal laser scanning microscopy and small-deformation rheology. The results obtained clearly showed that differences in the molecular weight of the polysaccharide have a significant influence on the gel microstructure. Homogeneous mixtures and phase-separated systems, with dispersed droplet and bicontinuous morphologies, were observed by changing the polysaccharide/protein ratio and/or the molecular weight. At 11% whey protein, below the gelation threshold of the protein alone, the presence of the nongelling polysaccharide induces gelation to occur. At higher protein concentration, the main effect of the polysaccharide was a re-enforcement of the gel. However, at the higher molecular weight and concentration of the nongelling polymer, the protein network starts to lose elastic perfection, probably due to the formation of bicontinuous structures with lower connectivity.  相似文献   

3.
Structure and solution properties of tamarind-seed polysaccharide.   总被引:10,自引:0,他引:10  
The major polysaccharide in tamarind seed is a galactoxyloglucan for which the ratios galactose:xylose:glucose are 1:2:25:2.8. A minor polysaccharide (2-3%) contains branched (1----5)-alpha-L-arabinofuranan and unbranched (1----4)-beta-D-galactopyranan features. Small-angle X-ray scattering experiments gave values for the cross-sectional radius of the polymer in aqueous solution that were typical of single-stranded molecules. Marked stiffness of the chain (C infinity 110) was deduced from static light-scattering studies and is ascribed partially to the restriction of the motion of the (1----4)-beta-D-glucan backbone by its extensive (approximately 80%) glycosylation. The rigidity of the polymer caused significant draining effects which heavily influenced the hydrodynamic behaviour. The dependence of "zero-shear" viscosity on concentration was used to characterise "dilute" and "semi-dilute" concentration regimes. The marked dependence on concentration in the "semi-dilute" region was similar to that for other stiff neutral polysaccharide systems, ascribed to "hyper-entanglements", and it is suggested that these may have arisen through a tenuous alignment of stiffened chains.  相似文献   

4.
An arabinogalactan protein (F2) was isolated in 1.5% yield from the seeds of Ribes nigrum L. (Grossulariaceae) by aqueous extraction and a one-step anion exchange chromatography on DEAE-Sephacel with 24% galactose, 43% arabinose, and 20% xylose as main carbohydrate residues. Methylation analysis revealed the presence of a 1,3-/1,3,6-galactose backbone, side chains from arabinose in different linkages, and terminal xylose residues. The polysaccharide which turned out to be an arabinogalactan protein had a molecular weight of >106 Da and deaggregated under chaotropic conditions. The cellular dehydrogenase activities (MTT and WST-1 tests) of human skin cells (fibroblasts, keratinocytes) as well as the proliferation rate of keratinocytes (BrdU incorporation ELISA) were significantly stimulated by the polymer at 10 and 100 μg/mL. F2 had no influence on differentiation status of keratinocytes and did not exhibit any cytotoxic potential (LDH test). The biological activity of F2 was not dependent on the high molecular weight. Influence of the polysaccharide on the gene expression of specific growth factors, growth factor receptors, signal proteins and marker proteins for skin cell proliferation, and differentiation by RT-PCR could not be shown. Gene array investigations indicated an increased expression of various genes encoding for catabolic enzymes, DNA repair, extracellular matrix proteins, and signal transduction factors. Removal of terminal arabinose residues by α-l-arabinofuranosidase did not influence the activity toward skin cells, while the treatment with β-d-galactosidase yielded an inactive polysaccharide. The FITC-labeled polysaccharide was incorporated in a time-dependent manner into human fibroblasts (laser scanning microscopy) via endosomal transport. This internalization of the polysaccharide was inhibited by Cytochalasin B.  相似文献   

5.
A structural transition is reported to occur in aqueous sols of agarose, an electrically uncharged biostructural polysaccharide. The transition has no measurable effect on size dispersity on the shape of the solute polysaccharide as observed by precision photon correlation spectroscopy. It originates a low-angle pattern of scattered light similar to that which monitors phase separations in polymer blends. Thus, it must be due to some extent to spatially modulated polymer clustering, typical of spinodal decomposition. In the interval of temperatures studied, it precedes very distinctly in time the thermoreversible sol–gel transition, which is known to be promoted at higher concentrations. It also anticipates to an appreciable extent the spatial density modulation observed in the gel. Although reported here for the first time, a spinodal decomposition of the sol that precedes and possibly triggers the processes leading to gelation does not come unexpectedly in terms of site-bond correlated-percolation theory. In general, this occurrence raises the question as to whether the spontaneous onset of regions of higher and lower polymer concentration (spinodal separation) may be regarded as a novel path for biomolecular interactions and the self-assembly of order in biomolecular systems.  相似文献   

6.
《Biophysical journal》2022,121(23):4644-4655
The gut microbiota comprises hundreds of species with a composition shaped by the available glycans. The well-studied starch utilization system (Sus) is a prototype for glycan uptake in the human gut bacterium Bacteroides thetaiotaomicron (Bt). Each Sus-like system includes outer-membrane proteins, which translocate glycan into the periplasm, and one or more cell-surface glycoside hydrolases, which break down a specific (cognate) polymer substrate. Although the molecular mechanisms of the Sus system are known, how the Sus and Sus-like proteins cooperate remains elusive. Previously, we used single-molecule and super-resolution fluorescence microscopy to show that SusG is mobile on the outer membrane and slows down in the presence of starch. Here, we compare the dynamics of three glycoside hydrolases: SusG, Bt4668, and Bt1760, which target starch, galactan, and levan, respectively. We characterized the diffusion of each surface hydrolase in the presence of its cognate glycan and found that all three enzymes are mostly immobile in the presence of the polysaccharide, consistent with carbohydrate binding. Moreover, experiments in glucose versus oligosaccharides suggest that the enzyme dynamics depend on their expression level. Furthermore, we characterized enzyme diffusion in a mixture of glycans and found that noncognate polysaccharides modify the dynamics of SusG and Bt1760 but not Bt4668. We investigated these systems with polysaccharide mixtures and genetic knockouts and found that noncognate polysaccharides modify hydrolase dynamics through some combination of nonspecific protein interactions and downregulation of the hydrolase. Overall, these experiments extend our understanding of how Sus-like lipoprotein dynamics can be modified by changing carbohydrate conditions and the expression level of the enzyme.  相似文献   

7.
The protease inhibitory spectra of the eight homozygous Thoroughbred Pi types against trypsin, elastase and chymotrypsin have been determined. The alpha 1-protease inhibitor proteins exhibit three classes of inhibitory specificity towards these enzymes. The Pi types F, I, N and U exhibit class I (trypsin, elastase and chymotrypsin) and class II (trypsin and elastase) types of inhibition and fit Juneja et al.'s (1979) classification of two separate genetic systems Pi 1 and Pi 2 based on differences in the inhibitory spectra against trypsin and chymotrypsin. The remaining four Pi types are exceptions to Juneja et al.'s (1979) classification. Types G, L, S1 and S2 possess class I but not class II proteins. A third class of proteins (class III) which exclusively inhibit chymotrypsin was detected in all eight protease inhibitor types. Type G is well represented by class III proteins because two of the three major proteins of the ISO-DALT pattern inhibit only chymotrypsin and is thus an exception to Juneja et al.'s (1979) classification.  相似文献   

8.
Acinetobacter venetianus RAG-1 produces an extracellular protein/high-molecular-weight (HMW) polysaccharide complex termed emulsan. As an emulsion stabilizer, emulsan has potential industrial applications. To control the molecular weight of the polymer, a stable chromosomal mutant was generated where RAG-1 wza, wzb, wzc genes were replaced by Escherichia coli homologs. The heterologous Wza, Wzb, Wzc proteins restored production of HMW polysaccharide. The polymer produced was of higher molecular weight than from the parent strain and with the cells exhibiting modified hydrophobicity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

10.
The amplitude of ultrasonic relaxation in aqueous solutions of disordered polysaccharides shows a marked increase with increasing degree of coil overlap and, at comparatively low concentrations, attains values comparable to those observed in polysaccharide gels. Mechanical spectroscopy studies indicate that, on the ultrasonic timescale, dynamic networks formed by polymer entanglement in solution are indistinguishable from true gels. In both cases the intense relaxations observed are attributed predominantly to motion of solvent within the polymer network. Due to the inherent stiffness of most polysaccharides, formation of a highly entangled network structure (with consequent enhancement of ultrasonic relaxation) occurs at much lower concentrations than for typical synthetic polymers. The onset of coil overlap (c1 transition) is accompanied by an abrupt change in the concentration dependence of ultrasonic velocity. Results for the conformationally rigid polysaccharide xanthan, suggest that velocity measurements may offer a convenient method for determination of c1 in systems where the normal viscometric characterisation is impossible.  相似文献   

11.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

12.
This paper describes the effect of an in-vitro poly(ADP-ribose) turnover system on the poly(ADP-ribosyl)ation of chromatin. Both poly(ADP-ribose)polymerase and poly(ADP-ribose)glycohydrolase were highly purified and used in 4 different turnover systems: non-turnover, slow, medium and fast turnover. These turnover systems were designed to reflect possible turnover conditions in intact cells. The major protein acceptors for poly(ADP-ribose) are histones and the polymerase itself, a process referred to as automodification. The level of poly(ADP-ribose) modification of polymerase, histone H1 and core histones has been measured. The size of the polymer for each of the 3 groups of acceptor proteins has been determined by gel electrophoresis. After many turnover cycles at medium and fast turnover, the histones (H1 and core) become the main poly(ADP-ribose) acceptor proteins. The rate at which steady-state polymer levels are reached and the total accumulation of polymer in a given turnover system are both inversely proportional to the amount of glycohydrolase present. Furthermore, increasing amounts of glycohydrolase in the turnover systems reduces average polymer size. The polymer synthesized in the medium and fast turnover systems is degraded by glycohydrolase in a biphasic fashion and in these systems the half-life of polymer agreed with results found in intact cells. Our results show that the relative levels of polymerase and glycohydrolase activities can regulate the proportional poly(ADP-ribose) distribution on chromatin-associated acceptor proteins during steady-state turnover conditions. The patterns of modification of polymerase and histones under turnover conditions agree with in vivo observations.  相似文献   

13.
14.
The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of beta1-4-linked O-acetylated d-mannuronate (M) and l-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed beta-helix (RHbetaH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHbetaH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHbetaH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHbetaH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHbetaH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second d-mannuronate residue to l-guluronate along the epimerase catalytic face.  相似文献   

15.
Summary Two types of polysaccharides were separated from the extracellular polysaccharide produced by Anabaena flos-aquae A-37 by ion exchange chromatography. The neutral polysaccharide is composed of mainly glucose with minor amounts of xylose in a molar ratio of 8:1. Glucose is believed to constitute the polysaccharide core to which xylose is attached. The acidic polysaccharide is composed of glucose and uronic acid as the major monomers with equal amounts of xylose and ribose as the minor constituents. The molar ratio of the monomers found in the acidic polymer is 6:1:1:10 as glucose: xylose: ribose: uronic acid. Chemical analyses showed that the extracellular polysaccharide consists of more neutral polymer (62%) than the acidic polymer (38%).  相似文献   

16.
The study of bacterial extracellular polysaccharide biosynthesis is hampered by the fact that these molecules are synthesized on membrane-resident carrier lipids. To get around this problem, a practical solution has been to synthesize soluble lipid analogs and study the biosynthetic enzymes using a soluble system. This has been done for the Bacillus subtilis teichoic acid polymerase, TagF, although several aspects of catalysis were inconsistent with the results obtained with reconstituted membrane systems or physiological observations. In this work we explored the acceptor substrate promiscuity and polymer length disregulation that appear to be characteristic of TagF activity away from biological membranes. Using isotope labeling, steady-state kinetics, and chemical lability studies, we demonstrated that the enzyme can synthesize poly(glycerol phosphate) teichoic acid using the elongation substrate CDP-glycerol as an acceptor. This suggests that substrate specificity is relaxed in the region distal to the glycerol phosphate moiety in the acceptor molecule under these conditions. Polymer synthesis proceeded at a rate (27 min−1) comparable to that in the reconstituted membrane system after a distinct lag period which likely represented slower initiation on the unnatural CDP-glycerol acceptor. We confirmed that polymer length became disregulated in the soluble system as the polymers synthesized on CDP-glycerol acceptors were much larger than the polymers synthesized on the membrane or previously found attached to bacterial cell walls. Finally, polymer synthesis on protease-treated membranes suggested that proper length regulation is retained in the absence of accessory proteins and provided evidence that such regulation is conferred through proper association of the polymerase with the membrane.  相似文献   

17.
Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope.  相似文献   

18.
Polysaccharides of Type 6 Klebsiella   总被引:2,自引:0,他引:2       下载免费PDF全文
Water-extractable type 6 Klebsiella antigens were separated into a type 6-specific acidic polysaccharide and a neutral polysaccharide. The neutral polymer was devoid of type 6 activity although it was serologically active. The type 6-specific polymer contained fucose, glucose, and mannose, and pyruvic, galacturonic, and possibly glucuronic acids. The neutral polymer contained glucose, galactose, and mannose.  相似文献   

19.
This paper describes an original mechanism of evolution of a polysaccharide system occurring during thermal treatments. Under its native conformation, the YAS34 polymer presents a solution character in the dilute and semi-dilute regimes. However, the zero shear rate viscosity indicates existence of interchain interactions which disappear on the deacetylated polymer. Thermal treatments over the temperature of conformational change produce a progressive and irreversible evolution of the physical properties when the polymer is under its sodium salt form. This evolution was related to a modification of the arrangement of acetyl substituents. The heated polysaccharide gives thermoreversible gel which is very elastic. A gelation mechanism is proposed based on formation of helical segments connecting the network.  相似文献   

20.
The concentration of skimmed milk proteins by polysaccharides such as gum arabic, arabinogalactan and apple pectin with a high content of methoxyl groups was studied. Investigation of the thermodynamic compatibility of skimmed milk proteins with these polysaccharides at different NaCl concentrations and pH has shown that above a certain polysaccharide concentration termed the ‘threshold of complete incompatibility’ the protein is almost completely excluded from the polysaccharide phase. Phase diagrams obtained for the systems: water-skimmed milk proteins-arabinogalactan, water-skimmed milk proteins-gum arabic and water-skimmed milk proteins-pectin, indicate that highly esterified apple pectin is superior to the other polysaccharides for concentrating skimmed milk proteins.The proposed method of concentration which may be called ‘membraneless isobaric osmosis' has a higher productivity and lower energy consumption than other methods of biopolymer concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号