首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.  相似文献   

2.
3.
The physiological, stomatal and ultrastructural responses to ozone and drought of ozone-sensitive and more ozone-tolerant birch ( Betula pendula Roth.) clones were studied singly and in combination, in a high-stress chamber experiment and in a low-stress open-field experiment. In the chamber experiment, well watered (WW), moderately watered (MW) or drought-stressed (DS) saplings were exposed for 36 d to 0 or 130 nmol mol∠1 ozone. In the open-field experiment, well watered or drought-stressed saplings were grown for one growing season in ambient air or exposed to 1·8 × ambient ozone. Drought stress reduced growth rate, stomatal conductance, stomatal density and the proportion of starch and thylakoids in chloroplasts, but stimulated net photosynthesis, Rubisco and chlorophyll quantity at the end of the growing season, and increased the size and density of plastoglobuli. Ozone fumigations caused more variable, clone- and exposure-dependent responses in growth, decreased stomatal conductance and net photosynthesis, an increased number of stomata, visible and ultrastructural chloroplast injuries, and enhanced autumn yellowing of the leaves. Ozone-induced changes in plastoglobuli, starch and thylakoids resembled drought responses. The two experiments revealed that, depending on the experimental conditions and the variable, the response to drought and ozone stress can be independent, additive or interactive. Drought protected the plants from ozone injuries under high-stress conditions in the chamber experiment. In the low-stress, open-field experiment, however, enhanced ozone damage was observed in birch saplings grown under restricted water supply.  相似文献   

4.
The effects of increased ultraviolet‐B (UV‐B) radiation on the growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings were studied in greenhouse conditions. Seedlings—planted in a birch‐forest top soil and sand substrate—were grown without additional nutrient supply. Ultraviolet treatment started immediately after the seedlings emerged and the daily integrated biologically effective UV‐B irradiance on the UV‐B‐treated plants was equivalent to a 25% depletion of stratospheric ozone under clear sky conditions. Visible symptoms of UV‐B damage or nutrient deficiency were not observed throughout the experiment. Seedling height and dry weight (DW) (measured after 58 days and 76 days of treatment) were not affected by increased UV‐B. However, a significant shift in DW allocation toward roots resulted in a lower shoot/root ratio and leaf area ratio in UV‐B‐treated plants compared to control plants. At the first harvest (after 58 days of treatment), the percentage of various mycorrhizal morphotypes and the number of short roots per unit of root length or weight were not affected by increased UV‐B despite significantly increased DW allocation toward roots. Subtle reduction in the allocation of nitrogen (N) to leaves and increased allocation of phosphorus (P) to roots may suggest cumulative effects that could affect the plant performance over the long‐term.  相似文献   

5.
Abstract Changes in the uptake and allocation of carbon and nitrogen, after a step-decrease in nutrient availability, were investigated in small birch (Betula pendula Roth). By demonstrating stable nutrition, before and after the decrease in nutrient supply, it was possible to eliminate the effects of plant size and age. Immediately following the step-decrease in nutrient availability, net nitrogen uptake to leaves and the relative rate of increase in shoot area tended to zero. Although photosynthetic rate per shoot area decreased, carbon uptake remained in excess of that used in structural growth and respiration. More of the excess carbon was accumulated as starch in leaves than in roots. After a lag phase, the relative rates of increase in plant dry matter, starch amount, net nitrogen uptake to leaves and shoot area development equalled that of the reduced rate of nutrient supply. It is concluded that the reduction in plant relative growth rate was much more attributable to the reduced allocation of photosynthate to leaf area growth than to the reduction in photosynthesis per shoot area.  相似文献   

6.
This paper reports the development of microsatellite primers for a widespread birch species Betula pendula. By screening genomic libraries with (TC)10 and (TG)10 probes, 38 microsatellite sequences were obtained, of which 23 proved to be polymorphic. Thirty genotyped individuals had two to 20 alleles per loci and a heterozygosity range of 0.17–0.92. Cross‐species amplification tests of four primer pairs on diverse birch species showed positive results in all cases. Also, one of two loci tested on related genus Alnus gave positive result.  相似文献   

7.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   

8.
9.
Abstract Small birch plants (Betula pendula Roth) were grown in a climate chamber at different levels of nutrient availability and at two photon flux densities. The extent to which starch storage was dependent upon nutrient availability and photon flux density was investigated. Acclimated values of starch concentration in leaves were highest at low nutrient availability and high photon flux density. Starch storage in roots was only found at the lowest nutrient availability. However, the relative rate of starch storage (starch stored per unit plant dry weight and time) was higher in plants with good nutrition. The data suggest that, at sub-optimal nutrient availability, the momentary rate of net shoot photosynthesis is unlikely to limit the structural (as opposed to carbon storage) growth of the plant. Although photosynthetic rate per unit leaf area (as measured at the growth climate) was slightly lower in plants with poor nutrient availability, photosynthetic rate per unit leaf nitrogen was higher. These data suggest a priority of leaf nitrogen usage in photosynthesis, with limiting amounts of leaf nitrogen (and possibly other nutrients) for subsequent growth processes. This argument is consistent with the higher concentrations of starch found in plants with poor nutrient availability.  相似文献   

10.
11.
12.
We have isolated the birch homologue (BP8) for the carrot embryogenic gene DC8 by heterologous hybridization. The birch BP8 gene encodes a putative protein of 53 kDa, showing 52% sequence identity with the DC8 gene at the amino acid level. The putative BP8 protein contains 20 repeats of 11 amino acids and thus belongs to the group of LEA proteins isolated from such plants as carrot, cotton and wheat. Northern hybridization of mRNA isolated from birch cells representing different stages of somatic embryogenesis and non-embryogenetic material with a PB8 probe gave no signals, suggesting a low expression level of the BP8 gene.  相似文献   

13.
Influence of elevated CO2 and O3 on Betula pendula Roth crown structure   总被引:4,自引:0,他引:4  
Elevated CO(2) and ozone effects were studied singly and in combination on the crown structure of two Betula pendula clones. Measurements were made at the end of the second fumigation period in an open-top-chamber experiment with 9-year-old trees. Shoot ramification (number of long and short daughter shoots), shoot length, and number of metamers, leaves and buds were measured at four positions in every tree. As a result of increased temperature, trees in chambers had longer shoots and more frequent shoot ramification than control trees not enclosed in chambers. Ozone treatment decreased shoot ramification significantly. Additionally, ozone treatment resulted in an increased number of metamers in one clone. There was no statistically significant interaction between ozone effect and crown position; however, there was a slight tendency for the lower crown to be more affected by ozone. Elevated CO(2) caused a significant increase in the number of long-shoot metamers. Therefore, 2x ambient CO(2) concentration partly ameliorated the negative effect of ozone because the increased number of leaves per shoot counteracted the decreased branching. Although the main effects of elevated ozone and CO(2) were similar in the two clones, slight, statistically insignificant, differences appeared in their responses when interactions with crown position were considered.  相似文献   

14.
In the first experiment, saplings of ozone-sensitive and a more tolerant clone of Betula pendula Roth were exposed to ambient ozone (control treatment, accumulated exposure over a threshold 40 nmol mol ? 1 (AOT40) exposure of 1·0 μmol mol ? 1 h) and 1·5 × ambient ozone (elevated-ozone treatment, AOT40 of 17·3 μmol mol ? 1 h) over one growing season, 1996. After over-wintering, the dormant elevated-ozone saplings were transferred to the control blocks and assessed for short-term carry-over effects during the following growing season. In the second experiment, three sensitive, four intermediate and three tolerant clones were grown under ambient ozone (control treatment, AOT40 of 0·5–0·8 μmol mol ? 1 h per growing season) and 1·6–1·7 × ambient ozone (elevated-ozone treatment, AOT40 of 18·3–18·6 μmol mol ? 1 h per growing season) from May 1994 until May 1996, and were assessed for long-term carry-over effects during growing season 1997, after a 12–16 months recovery period. Deleterious short-term carry-over effects of ozone exposure included reduced contents of Rubisco, chlorophyll, carotenoids, starch and nutrients in leaves, lower stomatal conductance, and decreased new shoot growth and net assimilation rate, followed by a 7·5% (shoot dry weight (DW)), 15·2% (root DW) and 23·2% (foliage area) decreased biomass accumulation and yield over the long term, including a reduced root : shoot ratio. However, a slow recovery of relative growth rates during the following two seasons without elevated ozone was apparent. Several long-lasting structural, biochemical and stomatal acclimation, stress-defence and compensation reactions were observed in the ozone-tolerant clone, whereas in the sensitive clone allocation shifted from growth towards defensive phenolics such as chlorogenic acid. The results provide evidence of persistent deleterious effects of ozone which remain long after the ozone episode.  相似文献   

15.
Abstract 1 The effect of elevated CO2 and temperature on the foliar chemistry Betula pendula Roth and the feeding performance of polyphagous weevils Phyllobius maculicornis Germ. was studied. Birch seedlings were grown during one growing season in chamber‐less field conditions and in closed‐top chambers exposed to four different treatments: ambient CO2 (350 p.p.m) and temperature, elevated atmospheric CO2 (700 p.p.m) and ambient temperature, elevated temperature +3 °C above ambient) and ambient CO2, and a combination of elevated CO2 and temperature. 2 In leaves under CO2 enrichment, the concentration of nitrogen and some flavonol glycosides significantly decreased, whereas the concentration of total phenolics, condensed tannins and (+)‐catechin significantly increased. The total concentration of cinnamoylquinic acids was significantly increased by CO2 and decreased by temperature. The concentration of salidroside increased under elevated temperature. 3 Weevil‐feeding experiments were carried out in a five‐choice arrangement, one leaf from each of the five treatments (chamber‐less field controls and four different treatments in chambers) being placed in random order in a plastic box. The weevils preferred the leaves grown under elevated CO2, which had low nitrogen, high phenolics and the highest condensed tannin concentrations. Whether the reason for this trend is due to the stimulating effect of condensed tannins and/or a change in other secondary compounds, remains unknown. The weevils did not show any obviously different response in feeding performance to temperature and the combination of elevated CO2 and temperature.  相似文献   

16.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

17.
18.
19.
Impacts of ozone and CO2 enrichment, alone and in combination, on leaf anatomical and ultrastructural characteristics, nutrient status and cell wall chemistry in two European silver birch (Betula pendula Roth) clones were studied. The young soil‐growing trees were exposed in open‐top chambers over three growing seasons to 2 × ambient CO2 and/or ozone concentrations in central Finland. The trees were measured for changes in altogether 35 variables of leaf structure, nutrients and cell wall chemistry of green leaves, and 20 of the measured variables were affected by CO2 and/or O3. Elevated CO2 increased the size of chloroplasts and starch grains, number of mitochondria, P : N ratio, and contents of cell wall hemicellulose. Elevated CO2 decreased the total leaf thickness, specific leaf area, concentrations of N, K, Cu, S and Fe, and contents of cell wall α‐cellulose, uronic acids, acid‐soluble lignin and acetone‐soluble extractives. Elevated ozone led to thinner leaves, higher palisade to spongy ratio, increased number of peroxisomes and mitochondria, reduced content of Mn, Zn, Cu, hemicellulose and uronic acids, and lower Mn : N and Zn : N ratios. In the combined exposure, interactions were antagonistic. Ultrastructural changes became more evident towards the end of the exposure. Young leaves were tolerant against ozone‐caused oxidative stress, whereas oxidative H2O2 accumulation was found in older leaves. CO2 enrichment improved ozone tolerance not only through increased photosynthesis rates, but also through changes in cell wall chemistry (hemicellulose, in particular). However, nutrient imbalances due to ozone and/or CO2 may predispose the trees to other biotic and abiotic stresses. Down‐regulation and up‐regulation of photosynthesis under elevated CO2 through anatomical changes is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号