首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nitrogen partitioning among three generations of tillers within the bunchgrass Schizachyrium scoparium var. frequens was investigated in a controlled environment as a potential mechanism of herbivory tolerance. Nitrogen-15 was transported from the labelled primary tiller generation to both shoots and roots of nondefoliated secondary and tertiary tiller generations within 24 h. Partial defoliation increased shoot nitrogen concentration of secondary and tertiary generation tillers by 110 and 120%, respectively, 24 h following defoliation. Shoot nitrogen concentration was preferentially increased by partial defoliation of tertiary generation tillers throughout the 120 h experimental period, but diminished to concentrations comparable to nondefoliated tillers within shoots of the secondary generation at 72 h. In contrast to nitrogen concentration, the total amount of nitrogen imported by secondary and tertiary generation tillers decreased 62 and 73%, respectively, 24 h following partial defoliation and did not attain values comparable to respective nondefoliated tillers. Consequently, preferential nitrogen concentration occurred in response to partial tiller defoliation without an increase in total nitrogen import based on the reduction in the total nitrogen requirement per tiller generation associated with defoliation. Estimates of both the total amount of nitrogen import and nitrogen concentration are necessary to accurately interpret the dynamics of intertiller nitrogen allocation.  相似文献   

2.
In this study we evaluated (1) the combined effects of simulated defoliation and below-ground herbivory (BGH) on the biomass and nitrogen content of tillers and roots of the bunchgrass Muhlenbergia quadridentata and (2) the effect of defoliation on the survival of third-instar root-feeder larvae of Phyllophaga sp. The experiment was performed in a pine forest area at an altitude of 3200 m above sea level. The grass and the root-feeder species were native and dominant in the understory and in the macroarthropod root-feeder communities, respectively. Plants were established in pots in the field and were subjected to the following treatments in a factorial design: simulated defoliation (three levels) and BGH (with or without root-feeder larvae) with ten replicates per treatment. Plants were defoliated three times at 2-month intervals. The interaction between defoliation and root herbivory was significant for all components of plant biomass. In every case, light defoliation with BGH decreased live above-ground, root and total plant biomass, and the number of live tillers by more than 50% with respect to the same defoliation level without root-feeders. Plants apparently did not compensate for the carbon drain by root-feeders when a high proportion of older leaves were not removed by defoliation. Plants under heavy defoliation were not affected by the presence of root-feeders and showed a greater live/dead above-ground biomass ratio than lightly defoliated and control plants. Defoliation and BGH did not change tiller and root N concentrations but root herbivores did decrease live-tiller N content in lightly defoliated plants. Root-feeders but not defoliation decreased the root/shoot ratio by 40% and the live/dead above-ground biomass ratio by 45% through increased tiller mortality. Survivorship and final biomass of Phyllophaga sp. larvae were not affected by defoliation treatments during the 6-month study period. Received: 17 May 1996 / Accepted: 1 November 1996  相似文献   

3.
In glasshouse and field experiments the source-sink relations of the main shoot of plants of spring barley were modified by tiller removal and tiller defoliation. Decreasing competition by tiller removal promoted the growth of the residual main shoot and its component parts, and the earlier tillers were removed the greater was the effect. Stem dry weight was increased four-fold in the glasshouse by early tiller removal and was doubled in the field experiment. The grain yield of the main shoot ear was increased by 26 – 30% by tiller removal compared with tillering control plants and this was due to larger grains in all spikelet positions. On the other hand increasing competition by regular tiller defoliation had relatively little effect on the growth and development of the main shoot in the glasshouse study, but in the field the main shoot grain yield was reduced by 10% compared with the control. The main effect of tiller defoliation was on the development of tillers. In the glasshouse tillers survived repeated defoliation, continued to be produced, and the majority produced grain but with fewer and smaller grains per ear than in control plants. Tiller growth was supported by the import of assimilate from the main shoot and this was accompanied by an increase in the photosynthetic rate of the main shoot leaves. In the field all defoliated tillers died within 4 wk. These responses are discussed in terms of the physiological interrelations between the main shoot and tillers.  相似文献   

4.
Summary Agropyron desertorum, a grazing-tolerant bunchgrass introduced to the western U.S. from Eurasia, and Agropyron spicatum, a grazing-sensitive bunchgrass native to North America, were examined in the field for photosynthetic capacity, growth, resource allocation, and tiller dynamics. These observations allowed identification of physiological characteristics that may contribute to grazing tolerance in semiarid environments. A uniform matrix of sagebrush, Artemisia tridentata, provided an ecologically relevant competitive environment for both bunch-grass species. Physiological activity, growth, and allocation were also followed during recovery from a severe defoliation treatment and were correlated with tiller dynamics.Potential photosynthetic carbon uptake of both species was dominated by stems and leaf sheaths during June, when maximum uptake rates occurred. For both species, water use efficiency of stems and sheaths was similar to that of leaf blades, but nitrogen investment per photosynthetic surface area was less than in blades. In addition, soluble carbohydrates in stems and sheaths of both species constituted the major labile carbon pools in control plants. Contrary to current theory, these findings suggest that culms from which leaf blades have been removed should be of considerable value to defoliated bunchgrasses, and in the case of partial defoliation could provide important supplies of organic nutrients for regrowth. These interpretations, based on total pool sizes, differ markedly from previous interpretations based on carbohydrate concentrations alone, which suggested that crowns contain large carbohydrate reserves. In this study, crowns of both species contained a minor component of the total plant carbohydrate pool.Following defoliation, A. desertorum plants rapidly reestablished a canopy with 3 to 5 times the photosynthetic surface of A. spicatum plants. This difference was primarily due to the greater number of quickly growing new tillers produced following defoliation. Agropyron spicatum produced few new tillers following defoliation despite adequate moisture, and carbohydrate pools that were equivalent to those in A. desertorum.Leaf blades of regrowing tillers had higher photosynthetic capacity than blades on unclipped plants of both species, but the relative increase, considered on a unit mass, area, or nitrogen basis, was greater for A. desertorum than for A. spicatum. Agropyron desertorum also had lower investment of nitrogen and biomass per unit area of photosynthetic tissues, more tillers and leaves per bunch, and shorter lived stems, all of which can contribute to greater tolerance of partial defoliation.Greater flexibility of resource allocation following defoliation was demonstrated by A. desertorum for both nitrogen and carbohydrates. Relatively more allocation to the shoot system and curtailed root growth in A. desertorum resulted in more rapid approach to the preclipping balance between the root and shoot systems, whereas root growth in A. spicatum continued unabated following defoliation. Nitrogen required for regrowth in both species was apparently supplied by uptake rather than reserve depletion. Carbohydrate pools in the shoot system of both species remained very low following severe defoliation and were approximately equivalent to carbon fixed in one day by photosynthesis of the whole canopy.Dedicated to Drs. Michael Evenari and Konrad Springer  相似文献   

5.
Summary Growth and carbon allocation of a cool season tussock grass, Agropyron desertorum, following defoliation of newly initiated tillers in the autumn of 1988 and 1989 were investigated. Tiller density and mortality, reproductive shoot density, root density, biomass, individual tiller weight, carbon allocation, and soil water depletion were used to evaluate the response of A. desertorum to autumn grazing. Tiller recruitment was lower in the autumn-defoliated treatment in both years compared with the control because of the cessation of tiller development following autumn defoliation. Autumn defoliation also significantly reduced the movement of 13C to the roots in 1988 but not in 1989. Soils were cooler and drier in 1989. Other plant growth measurements and soil water depletion rates were not different between treatments. Autumn defoliation in 1988 did not influence tiller recruitment in the following autumn. Two consecutive years of autumn defoliation did not affect tiller overwinter mortality or peak standing crop in 1990.  相似文献   

6.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

7.
Invasion by the rhizomatous grass Kentucky bluegrass (Poa pratensis) is a global phenomenon, including into foothills rough fescue (Festuca campestris) grasslands of southwestern Alberta, Canada. In order to better understand the competitive relationships between these species, we conducted a fallow field study where rough fescue bunchgrass tussocks were transplanted at one of three planting densities (15, 30, or 45 cm spacing), and then subject to various treatments in a factorial design, including one‐time intensive summer defoliation and seeding of bluegrass into adjacent bare soil. Rough fescue plants exhibited marked intraspecific competition, as high planting densities increased tussock mortality, while decreasing plant tiller counts and relative inflorescence production, together with plant and tiller‐specific mass. However, high densities of the bunchgrass also reduced the cover and biomass of encroaching bluegrass, coincidental with reduced resource (soil moisture and light) availability in mid‐summer. Although summer defoliation increased rough fescue tiller counts, this disturbance reduced plant and tiller mass, and also increased Kentucky bluegrass. We conclude that while high densities of nondefoliated stands of rough fescue may increase resistance to bluegrass encroachment, a reduction in either fescue plant density or vigor via defoliation can increase the risk of bluegrass invasion within northern temperate grassland.  相似文献   

8.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

9.
The patterns of growth, assimilation of 14CO2 and distribution of 14C-labelled assimilate were followed for 12 wk from sowing in individual plants of Lolium perenne grown in miniswards at either low (500 plants m-2) or high (5000 plants m-2) density. At the latter density, plants were characterised by a 50% reduction in RGR, by the production of fewer tillers, especially second- and third-order tillers, and by a reduction in mean tiller weight. All the green and senescing leaves of each tiller assimilated 14CO2 and the overall assimilatory capacity of a tiller was directly related to its dry weight. At both densities the plant consisted of a main shoot and established tillers with comparable assimilatory activities and a range of developing tillers that assimilated relatively small amounts of 14CO2. As each successive primary tiller developed it was supplied with assimilate from the main shoot and the degree of support was inversely proportional to the dry weight of the tiller. At both densities it was concluded that the first primary tiller could be regarded as an independent assimilatory unit when it reached a dry weight of about 25 mg even though some import of main shoot assimilate continued until the tiller was double this weight. The supply of assimilate to the root system was greatly reduced at both densities compared with previous observations on plants grown singly.  相似文献   

10.
Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA) for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.  相似文献   

11.
Abstract. Three patterns of target-neighbor plant defoliation were imposed on a late-seral, perennial, C4-grass, Bouteloua curtipendula, in three long-term grazing regimes to determine the influence of selective defoliation on competitive interactions and species replacement in a semiarid savanna on the Edwards Plateau, Texas, USA. Short-term (3-yr) target plant defoliation did not significantly affect either tiller or plant responses in any of the three grazing regimes. Neighbor plant defoliation, either alone or in combination with target plants, produced a significant defoliation interaction with time for tiller number and basal area per plant, but not for tiller recruitment or mortality. The minimal effect of selective defoliation on the intensity of competitive interactions in this semiarid community indicates that selective grazing has a less definitive role in mediating herbivore-induced species replacement than it does in mesic grasslands and savannas. This interpretation is discussed within the context of long-term (45-yr) change in herbaceous vegetation associated with grazing in this community. Cumulative tiller recruitment in the intensively grazed regime was only 44% of that in the ungrazed regime because of greater plant mortality and fewer surviving plants that recruited tillers. Target plant mortality (50%) only occurred in the intensively grazed regime and the proportion of target plants that initiated tillers decreased by 70, 48 and 32% in the ungrazed, moderately and intensively grazed regimes, respectively, during the final two years of the investigation. The decrease in cumulative tiller recruitment in all grazing regimes was probably mediated by a drought-induced increase in median tiller age the second year of the study. However, tiller per tiller recruitment rate among plants that recruited at least one tiller remained relatively constant among grazing regimes and years. Intensive, long-term grazing has modified the population structure of this late-seral perennial grass to the extent that population responses to both herbivory and periodic drought have been altered in comparison with those of ungrazed and moderately grazed populations. Ecological consequences of a herbivore-induced transition in population structure may be to minimize the effect of selective herbivory on competitive interactions and to function as an avoidance mechanism to reduce the probability of localized population extinction in response to intensive long-term herbivory.  相似文献   

12.
Herbivory by large animals is known to function as a selection pressure to increase herbivory resistance within plant populations by decreasing the frequency of genotypes possessing large, erect canopies. However, the increase in herbivory resistance of the remaining genotypes in the population may potentially involve a tradeoff with competitive ability. The perennial bunchgrass Schizachyrium scoparium was grown in a transplant garden to test the hypothesis that late successional plant populations with a history of grazing are at a competitive disadvantage relative to conspecific populations with no history of grazing were found to possess a greater competitive ability than plants with no grazing history in the absence of herbivory. This unexpected response resulted from the capacity of plants with a history of grazing to recruit a greater number of smaller tillers than did plants with no grazing history. This response was only significant when plants with a history of grazing were nondefoliated and grown with the weakest of the mid-successional competitors, indicating that both defoliation and intense interspecific competition can mask the architectural expression of herbivore-induced selection. Individual tillers did not display any architectural differences between plants with contrasting grazing histories other than mean tiller weight. These data confirm that herbivory by domestic cattle may function as a selection pressure to induce architectural variation in grass populations within an ecological time frame (ca <-25 yrs).  相似文献   

13.
Bud viability after various defoliation frequency treatments was determined in the perennial bunchgrass Poa ligularis under arid field conditions from 2002 to 2005. Bud respiratory activity was examined on various stem base hierarchies using the tetrazolium test, as validated with the vital stain Evan’s blue. The hypothesis of this work was that the total and viable axillary bud numbers on stem bases of all study stem base hierarchies are reduced as defoliation frequency increases. Interpretation of the results differed when they were expressed as a percentage rather than on a number per stem base basis. The total number of axillary buds per stem base was similar in all defoliation frequencies. When the results were expressed on a percentage basis, the order on stem bases having metabolically active buds was daughter tillers > stem bases with green tillers > stem bases without green tillers in all defoliation frequencies. The reverse order was found when considering dead buds. How the results are expressed thus deserves our attention when reporting results on bud viability in perennial grasses. An increased defoliation frequency increased the percentage of dead and dormant buds after the third or fourth defoliation of P. ligularis during the 1st study year. These percentages of bud viability, however, increased after the first defoliation during the 2nd study year. Bud viability was affected not only by the cumulative effects of defoliation but also by climatic variables throughout the seasons. However, our results show that P. ligularis can be defoliated up to twice a year without affecting bud viability, and thus its potential capacity for regrowth after defoliation.  相似文献   

14.
The physiological organisation of plants is considered in relation to the carbon economy of plant parts. Although assimilate is partitioned according to the relative strength of sinks, in many species there is also a very close relationship between partitioning and shoot phyllotaxy, giving rise to sectorial patterns of allocation whereby only certain sinks are supported by any source leaf. Essentially these sinks are in the same orthostichy as the source leaf. This constraint of the vascular architecture on assimilate distribution to developing sinks such as leaves, flowers and fruits is not always absolute, as following the loss of their principal source leaves these sinks can in many cases be supplied with assimilate by other leaves via new inter-orthostichy pathways. The supply of assimilate to major sinks such as developing fruits becomes more and more localised with time so that a fruit in an axillary position becomes largely supported by its subtending leaf; the reproductive node—a metamer-can thus be regarded as a relatively autonomous unit of the plant (an IPU). Similary, once established after a developmental phase of assimilate import, tiller ramets and branches in unitary plants tend to become physiologically autonomous modules. However, the functional autonomy of tillers is reversed following defoliation or shading as they are then sustained by the import of assimilate, subject to its availability, from unaffected tillers. Consequently the plant becomes physiologically integrated by the flow of assimilate from one part to another. The mainly autonomous ramets of many stoloniferous and rhizomatous species display a similar pattern of physiological integration in response to source manipulation, but in some species the ramets appear to maintain their independent functioning as a normal feature of the carbon allocation within the clone. In other clonal species, as the clone develops and becomes more structurally complex, vascular constraints start to restrict the movement of resources, and the clone becomes composed of a number of semi-autonomous IPUs. In unitary plants branches appear to remain very physiologically isolated in terms of their carbon economy once they become established, irrespective of a range of source-sink manipulations.These different patterns of physiological integration and organisation are discussed in relation to different strategies of assimilate utilisation and conservation.  相似文献   

15.
Although factors affecting plant growth and plant carbon/nutrient balance – e.g., light availability and defoliation by herbivores – may also propagate changes in below‐ground food webs, few studies have aimed at linking the above‐ground and below‐ground effects. We established a 29‐week laboratory experiment (~one growing season) using autotrophic microcosms to study the effects of light and defoliation on plant growth, plant carbon/nutrient balance, soil inorganic N content, and microbial activity and biomass in soil. Each microcosm contained three substrate layers – mineral soil, humus and plant litter – and one Nothofagus solandri var. cliffortioides seedling. The experiment constituted of the presence or absence of two treatments in a full factorial design: shading (50% decrease in light) and artificial defoliation (approximately 50% decrease in leaf area in the beginning of the growing season). At the end of the experiment a range of above‐ground and below‐ground properties were measured. The shading treatment reduced root and shoot mass, root/shoot ratio and leaf production of the seedlings, while the defoliation treatment significantly decreased leaf mass only. Leaf C and N content were not affected by either treatment. Shading increased NO 3–N concentration and decreased microbial biomass in humus, while defoliation did not significantly affect inorganic N or microbes in humus. The results show that plant responses to above‐ground treatments have effects which propagate below ground, and that rather straightforward mechanisms may link above‐ground and below‐ground effects. The shading treatment, which reduced overall seedling growth and thus below‐ground N use and C allocation, also led to changes in humus N content and microbial biomass, whereas defoliation, which did not affect overall growth, did not influence these below‐ground properties. The study also shows the carbon/nutrient balance of N. solandri var. cliffortioides seedlings to be highly invariant to both shading and defoliation.  相似文献   

16.
Abstract Festuca rubra forms tillers in two different ways: extravaginally and intravaginally. Demography of these two tiller types was observed in seventeen selected tussocks of Festuca rubra s.s. over four growing seasons. Extravaginal tillers were bigger at birth and on the average produced twice as many daughter tillers per tiller. In general, the natality and mortality of extravaginal tillers were less regular than that of intravaginal tillers. Overall tillering rate per tiller was correlated with the density of the surrounding vegetation; mortality, natality and tiller life span were not. High density of the surrounding vegetation did not result in increased formation of extravaginal tillers. The proportion of the extravaginal tillers was not correlated with the density of the F. rubra tussocks. There is no evidence for foraging by extravaginal tillers, but they do act as founders of small clusters of tillers.  相似文献   

17.
Axillary bud number, bud respiratory activity, and photosyntheticcanopy re-establishment after defoliation were determined fortwo bunchgrass species, Agropyron desertorum and Agropyron spicatum,which were exposed to draughted, natural or irrigated conditions.These field treatments were repeated annually on the same plantsfor the period 1984–1986. Bud respiratory activity wasexamined using the tetrazolium test, which was validated withthe vital stain Evan's blue, at the end of the study In spring of the third year, the number of axillary buds ontillers of both species was lowest in the drought treatment.Most of these buds, and those observed immediately after defoliationin 1985, were metabolically active. These results indicate thatafter mid-season defoliation under drought, when no re-growthoccurred, the re-growth capacity was not limited by bud numberor viability. After 3 years of defoliation, tiller number andgrowth in both species were reduced in the following springunder all water regimes. This reduction was present 1 year earlierin the drought treatment than in the treatments with higherwater availability. Permanent dormancy or death of the replacementaxillary meristems can explain this plant response. Continueddefoliation of the tillers under drought would reduce the photosyntheticarea further, and probably affect the persistence of these speciesin the community Agropyron desertorum, Agropyron spicatum, crested wheatgrass, bluebunch wheatgrass, drought, defoliation, re-growth, bud viability, tetrazolium, Evan's blue  相似文献   

18.
Autoradiographs were made of plants of Lolium multiflorum Lam.after 14CO2 had been fixed by selected leaves. The results showedthat labelled compounds were not translocated to other tillersbut were moved to the whole root system. This pattern of distributionwas changed when all or some of the tillers on the plant weredefoliated. Where a single undefoliated tiller remained, itinitially supplied the cut tillers with 14C-containing products,thus reintegrating a system of apparently independent tillers.When all the tillers were partially defoliated, labelled compoundswere no longer translocated to the root system. A further experimentsuggested that root reserves were not mobilized for regrowthfollowing defoliation. These results are discussed in termsof the integration of a grass plant in the vegetative state.  相似文献   

19.
In seed crops of Lolium perenne, yield may be reduced by competition for a limited assimilate supply from sinks other than the ear. This study was undertaken to evaluate the priorities for allocation of assimilate within the crop from all photosynthetic sites on the main reproductive tiller after anthesis. Ear, stem and leaves were fed with 14CO2 on two occasions; the assimilatory efficiency of these sources and the magnitude and pattern of 14C-assimilate export from each was determined. The growth of each part of the main tiller and subtending tillers was also measured. Stem elongation apparently dominated the current assimilate resource and the ear did not become a net importer of assimilate until this process had ceased. Assimilate allocation to the tillers was high throughout. The nature of any competition between these sinks is discussed. When crop growth was contrasted with that in a previous year, environmental factors were implicated as determinants of priority for assimilate allocation to each sink. Sources of carbon for seed filling are also discussed as is the relevance of these findings to seed crop management.  相似文献   

20.
Appropriate resource partitioning to either production of new tillers or growth of individual tillers is a critical factor for increasing rice biomass production and facilitating adaptation to climate change. We examined the contributions of genotypic variation to the tiller number and individual tiller growth of 24 rice cultivars in response to an elevated atmospheric CO2 concentration [CO2] (control + 191 μmol mol−1) and a low air temperature (control minus 4.7 °C) during 56 days of vegetative growth after transplanting. For all genotypes combined, biomass increased by 27% under elevated [CO2] and decreased by 34% at low temperature, with a significant genotype × temperature interaction. The increase caused by elevated [CO2] resulted from increased tiller number, and the decrease caused by low temperature resulted from decreased growth of individual tillers. Despite the different overall responses to elevated [CO2] and low temperature, most of the genotypic variation in biomass at elevated [CO2] and low temperature was explained by the responses of tiller number rather than by individual tiller growth. The genotypes with the highest biomass response to elevated [CO2] had a smaller reduction of biomass under low temperature. These results highlight the greater importance of genotypic variation in tiller number than in individual tiller growth in the response of biomass to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号