首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aqueous polymer three-phase systems composed of dextran-Ficoll-polyethylene glycol-water have been used for affinity partition of proteins. The upper, middle, and lower phases are rich in polyethylene glycol, Ficoll, and dextran, respectively. Affinity partition was performed using the reactive dyes Cibacron Blue F36-A and Remazol Yellow GCL which are known as specific ligands for albumin and prealbumin from human serum. When the ligands were bound alternatively to polyethylene glycol, Ficoll, or dextran the target proteins were directed toward the upper, middle, or lower phase, respectively. In the presence of two ligands immobilized to two different polymers the distribution of two proteins could be steered to different phases at the same time. Serum albumin and prealbumin could be separated by using Cibacron Blue-Ficoll and Remazol Yellow-dextran or Cibacron Blue-polyethylene glycol and Remazol Yellow-dextran as polymer ligands.  相似文献   

2.
Summary The potential of a recently isolated wood-degrading fungus, Trichophyton rubrum LSK-27, for effective decolorization of textile azo dyes was evaluated. Within two days of dye addition, the fungus was able to decolorize 83% of Remazol Tiefschwarz, 86% of Remazol Blue RR and 80% of Supranol Turquoise GGL in liquid cultures. The reactive dyes, Remazol Tiefschwarz and Remazol Blue, were removed by fungal biodegradation, while decolorization of the acid dye, Supranol Turquoise GGL, was accomplished mainly by bioadsorption. Therefore the fungus proved to be efficiently capable of both biodegradation and biosorption as the major dye removal mechanisms. The extent of biodegradation was associated with the levels of the extracellular ligninolytic enzymes such as manganese peroxidase and laccase.  相似文献   

3.
Since it had previously been found that biomass derived from the thermotolerant ethanol-producing yeast strain Kluyveromyces marxianus IMB3 exhibited a relatively high affinity for heavy metals it was decided to determine whether or not it might be capable of textile dye biosorption. To this end, biosorption isotherm analysis was carried out using the biomass together with commonly-used textile dyes including Remazol Black B, Remazol Turquoise Blue, Remazol Red, Remazol Golden Yellow and Cibacron Orange. Although the dyes Remazol Black B, Remazol Turquoise Blue and Remazol Red adhered to the Langmuir model, the remaining dyes failed to do so. The observed biosorption capacities at equilibrium dye concentrations of 100?mg/l were compared and it was found that the biomass exhibited a significant affinity for each dye. The potential use of this biosorptive material in the bioremediation of textile processing effluents is discussed.  相似文献   

4.
The transport of more than 90% of the drugs viz. anticoagulants, analgesics, and general anesthetics in the blood takes place by albumin. Hence, albumin is the prime protein needs to be investigated to find out the nature of drug binding. Serum albumin molecules are prone to glycation at elevated blood glucose levels as observed in diabetics. In this piece of work, glycation of bovine serum albumin (BSA) was carried out with glyceraldehyde and characterized by molecular docking and fluorometry techniques. Glycation of BSA showed 25% loss of free amino groups and decreased protein fluorescence (60%) with blue shift of 6 nm. The present study was also designed to evaluate the binding of colchicine (an anti-inflammatory drug) to native and glycated BSA and its ability to displace 8-analino-1-nephthalene sulfonic acid (ANS), from the BSA–ANS complex. Binding of ANS to BSA showed strong binding (Ka = 4.4 μM) with native conformation in comparison to glycated state (Ka = 8.4 μM). On the other hand, colchicine was able to quench the fluorescence of native BSA better than glycated BSA and also showed weaker affinity (Ka = 23 μM) for glycated albumin compared with native state (Ka = 16 μM). Molecular docking study showed that both glyceraldehyde and colchicine bind to common residues located near Sudlow’s site I that explain the lower binding of colchicine in the glycated BSA. Based on our results, we believe that reduced drugs-binding affinity to glycated albumin may lead to drugs accumulation and precipitation in diabetic patients.  相似文献   

5.
Amaranth, Tropaeolin O, Reactive Blue 15, Congo Red, and Reactive Black 5 were completely decolorized with no dye sorption by Trametes versicolor. Cibacron Brilliant Red 3G-P, Cibacron Brilliant Yellow 3B-A, and Remazol Brilliant Blue R were partially decolorized with some dye sorbed to the biomass. The Microtox assay before decoloration showed that Amaranth and Tropaeolin O were not toxic [the percent concentration to decrease 20% of the luminescence of Vibrio fischeri (EC20) was greater than 100%]; Cibacron Brilliant Yellow 3B-A, Reactive Blue 15 and Cibacron Brilliant Red 3G-P were moderately non-toxic (100% > EC20 > 75%); Remazol Brilliant Blue R was toxic (75% > EC20 > 50%); and Congo Red and Reactive Black 5 were moderately toxic (50% > EC20 > 25%). After decoloration the toxicity of the solutions containing Amaranth, Tropaeolin O and Reactive Black 5 was unchanged; Reactive Blue 15, Remazol Brilliant Blue R and Cibacron Brilliant Red 3G-P decreased to non-toxic levels; and Cibacron Brilliant Yellow 3B-A and Congo Red became very toxic (EC20 < 25%).  相似文献   

6.
1. Phosphofructokinase from baker's yeast is partitioned between the phases of an aqueous two-phase system, containing dextran (Mr = 500000) and poly(ethyleneglycol) (Mr = 6000), in favour of the dextran-rich phase. By covalent binding of the dye Cibacron blue F3G-A to poly(ethyleneglycol) the enzyme can be extracted to the phase rich in this polymer, i.e. affinity partitioning. 2. The affinity partitioning effect, measured as the logarithmic increase of the partition coefficient by introducing polymer-bound Cibacron blue, depends on several factors. The influence of dye-polymer concentration, polymer concentration, polymer molecular weight, kind of salt and salt concentration, pH and temperature has been studied. 3. The effect of ATP, ADP, AMP, ITP, fructose 1,6-bis-phosphate and fructose 6-phosphate show large differences in the binding strength of these substances to the Cibacron blue binding sites. AMP cannot compete with Cibacron blue while ATP is strongly competing. 4. The use of affinity partitioning for enzyme isolation and determination of ligand binding is discussed, as well as possible mechanisms concerning this type of liquid/liquid extraction.  相似文献   

7.
Summary As a first step in the study of hormone interaction with gastrin receptor-expressing cells, three fluorescent derivatives of heptagastrin were synthesized, characterized and tested for specificity and affinity towards gastrin/CCKB receptor by means of confocal laser scanning microscopy (CLSM). Cyanine dye Cy3.29 and borfluoropyrromethene (BODIPY) derivatives of the hormone were found to be absorbed into the cells and concentrated in perinuclear organelles by a non-receptor mediated process. The BODIPY derivative turned out to be chemically unstable and was bleached by the laser beam very rapidly. Rhodamine Green-heptagastrin retained a high affinity toward the gastrin receptor (Kd=45 nm in displacement of 125I-labeled cholecystokinin-8) and showed specific binding to NIH/3T3 cells stably transfected with human gastrin/CCKB receptor cDNA, but not to nontransfected 3T3 cells. The fluorescent signal of all three dyes was sufficiently intense for localization of the compounds in cells by means of CLSM. Rhodamine Green derivative was found to be a useful tool for the study of endocytosis of the hormone. It can also be utilized for quantitative estimation of binding and determination of Kd instead of the traditionally used radiolabeled derivatives of gastrin.Abbreviations BODIPY borfluoropyrromethene - CCK cholecystokinin - CCK-8 CCK octapeptide - RG-7G Rhodamine Green heptagastrin - BSA bovine serum albumin - DMEM Dulbecco's modified Eagle's medium - TFA trifluoroacetic acid - DMSO dimethylsulfoxide - EDTA ethylenediamino tetraacetic acid - CLSM confocal laser scanning microscopy  相似文献   

8.
Abstract

In the present work, we employed UV-VIS spectroscopy, fluorescence methods, and circular dichroism spectroscopy (CD) to study the interaction of dye Hoechst 33258, Hoechst 33342, and their derivatives to poly[d(AT)]·poly[d(AT)], poly(dA)·poly(dT), and DNA dodecamer with the sequence 5′-CGTATATATACG-3′. We identified three types of complexes formed by Hoechst 33258, Hoechst 33342, and methylproamine with DNA, corresponding to the binding of each drug in monomer, dimer, and tetramer forms. In a dimer complex, two dye molecules are sandwiched in the same place of the minor DNA groove. Our data show that Hoechst 33258, Hoechst 33342, and methylproamine also form complexes of the third type that reflects binding of dye associates (probably tetramers) to DNA. Substitution of a hydrogen atom in the ortho position of the phenyl ring by a methyl group has a little effect on binding of monomers to DNA. However it reduces strength of binding of tetramers to DNA. In contrast, a Hoechst derivative containing the ortho-isopropyl group in the phenyl ring exhibits a low affinity to poly(dA)·poly(dT) and poly[d(AT)]·poly[d(AT)] and binds to DNA only in the monomer form. This can be attributed to a sterical hindrance caused by the ortho-isopropyl group for side-by-side accommodation of two dye molecules in the minor groove. Our experiments show that mode of binding of Hoechst 33258 derivatives and their affinity for DNA depend on substituents in the ortho position of the phenyl ring of the dye molecule. A statistical mechanical treatment of binding of Hoechst 33258 and its derivatives to a polynucleotide lattice is described and used for determination of binding parameters of Hoechst 33258 and its derivatives to poly[d(AT)]·poly[d(AT)] and poly(dA)·poly(dT).  相似文献   

9.
The binding affinity between bovine serum albumin (BSA) and copper ferrite (CuFe2O4) nanoparticles in terms of conformation, stability and activity of protein was studied using various spectroscopic methods. The quenching involved in BSA–CuFe2O4 NP interaction was static quenching as analysed by different techniques (steady‐state and time‐resolved fluorescence along with temperature‐dependent fluorescence measurements). Among all types of possible interactions, it was revealed that the major binding forces were van der Waals interaction and hydrogen bonding, which were explored from negative values of enthalpy change (?H = ?193.85 kJ mol?1) and entropy change (?S = ?588.88 J mol?1 K?1). Additionally, synchronous, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy measurements confirmed the conformational changes in BSA upon the addition of CuFe2O4 NP. Furthermore, thermal denaturation observations were consistent with the circular dichroism results. The interaction of CuFe2O4 NP with BSA decreased the esterase activity in the BSA assay, revealing the affinity of copper ferrite towards the active site of BSA.  相似文献   

10.
The binding of the antibiotics netropsin and distamycin A to DNA has been studied by thermal melting, CD and sedimentation analysis. Netropsin binds strongly at antibiotic/nucleotide ratios up to at least 0.05. CD spectra obtained using DNA model polymers reveal that netropsin binds tightly to poly (dA) · poly (dT), poly (dA-dT) · poly(dA-dT) and poly (dI-dC) · poly (dI-dC) but poorly, if at all, to poly (dG) · poly (dC). Binding curves obtained with calf thymus DNA reveal one netropsin-binding site per 6.0 nucleotides (Ka=2.9 · 105 M−1); corresponding values for distamycin A are one site per 6.1 nucleotides with Ka= 11.6 · 105 M−1. Binding sites apparently involve predominantly A·T-rich sequences whose specific conformation determines their high affinity for the two antibiotics. It is suggested that the binding is stabilized primarily by hydrogen bonding and electrostatic interactions probably in the narrow groove of the DNA helix, but without intercalation. Any local structural deformation of the helix does not involve unwinding greater than approximately 3° per bound antibiotic molecule.  相似文献   

11.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

12.
Summary Using recently developed techniques, we have investigated the binding of 45Ca2+ to membrane preparations from corn (Zea mays L) and oat (Avena sativa L) coleoptile tissue. Scatchard plot analysis reveals at least two Ca2+-binding sites in each tissue, a high affinity binding site (K m=7.7×10-7 M, n=6.9×10-10 mol·0.5 g f.w.-1 in corn, K m=4.93×10-6 M, n=2.29×10-9 mol·0.5 g f.w.-1 in Avena) and a low affinity binding site (K m=9.01×10-5 M, n=5.4×10-8 mol·0.5 g f.w.-1 in corn; K m=1.03×10-4 M, n=3.40×10-8 mol·0.5 g f.w.-1 in Avena). There is also some evidence of a third, lower affinity binding site in each tissue, especially corn.More detailed studies with corn coleoptile homogenates show that they contain a potent dialyzable inhibitor of Ca2+ binding. Monovalent cations were observed to be ineffective as inhibitors of Ca2+ binding in corn. However, of six divalent cations tested, all were capable of strong inhibition of Ca2+-binding and there appeared to be a relationship between size of the atomic radius of the ion and potency as an inhibitor of calcium binding.Abbreviations CSM corn suspensiom medium - EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide - GEE glycine ethyl ester  相似文献   

13.
The polyadenylic acid [poly(A)] tail of mRNA plays a noteworthy role in the initiation of the translation, maturation, and stability of mRNA. It also significantly contributes to the production of alternate proteins in eukaryotic cells. Hence, it has recently been recognized as a prospective drug target. Binding affinity of bis(N-p-tolylbenzohydroxamato)Cobalt(II), [N-p-TBHA-Co(II)] (1) and bis(N-p-naphthylbenzohydroxamato)Copper(II), [N-p-NBHA-Cu(II)] (2) complexes with poly(A) have been investigated by biophysical techniques namely, absorption spectroscopy, fluorescence spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, circular dichroism spectroscopy, viscometric measurements and through molecular docking studies. The intrinsic binding constants (Kb) of complexes were determined following the order of N-p-TBHA-Co(II)] > N-p-NBHA-Cu(II), along with hyperchromism and a bathochromic shift for both complexes. The fluorescence quenching method revealed an interaction between poly(A)-N-p-TBHA-Co(II)/poly(A)-N-p-NBHA-Cu(II). The mode of binding was also determined via the fluorescence ferrocyanide quenching method. The increase in the viscosity of poly(A) that occurred from increasing the concentration of the N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) complex was scrutinized. The characteristics of the interaction site of poly(A) with N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) were adenine and phosphate groups, as revealed by DRS-FTIR spectroscopy. Based on these observations, a partial intercalative mode of the binding of poly(A) has been proposed for both complexes. Circular dichroism confirmed the interaction of both the complexes with poly(A). The molecular docking results illustrated that complexes strongly interact with poly(A) via the relative binding energies of the docked structure as ?259.39eV and ?226.30eV for N-p-TBHA-Co(II) and N-p-NBHA-Cu(II) respectively. Moreover, the binding affinity of N-p-TBHA-Co(II) is higher in all aspects than N-p-NBHA-Cu(II) for poly(A).  相似文献   

14.
W M Pardridge 《Life sciences》1979,25(17):1519-1528
The principles of the competitive ligand binding assay have been extended to the in vivo state to study the competition for tryptophan binding between albumin and the tryptophan transport system localized in the brain capillary wall, i.e., the blood-brain barrier (BBB). Based on the concentration of albumin (1.4 mM) which yields 50% inhibition of BBB tryptophan transport, the dissociation constant of tryptophan binding to albumin (KD = 0.13 mM), and the affinity constant of the BBB tryptophan transport system (KM = 0.19 mM), the apparent binding capacity of the BBB (1.9 mM), may be calculated. The high apparent binding capacity of the BBB enables the capillary transport system to compete with albumin for tryptophan binding; the inhibition of albumin binding by the carrier increases the fraction of tryptophan that is free in vivo to values greater than the fraction that is free in vitro. Depending on physiological changes in KM (e.g., due to plasma amino acid competition) or KD (due to plasma free fatty acid), the apparent free fraction of tryptophan in vivo may approximate either one of two extremes, i.e., the in vitro free fraction or the total tryptophan.  相似文献   

15.
Several manipulations that affect G protein/receptor coupling also alter the binding of [125I]iodocyanopindolol ([125I]ICYP)±cyanopindolol (±CYP) to rat brain 5-HT1B binding sites in radiologand binding assays. Inclusion of 5 mM MgSO4 in these assays results in a small but significant increase in the affinity of [125I]ICYP (fromK D=0.046 nM toK D=0.037 nM). In contrast, 100 M Gpp(NH)p, GTP, or GDP reduce [125I]ICYP affinity (K D=0.056 nM with GTP) while ATP and GMP are less effective.±CYP affinity for 5-HT1B sites labeled by [3H]dihydroergotamine ([3H]DE) also displays a small but significant reduction (from Ki=1.4 nM to Ki=3.5nM) by the inclusion of 100 M GTP. Pre-treatment of the brain membranes with N-ethylmaleimide (NEM) in concentrations known to inactivate many G proteins reduces 5-HT1B specific binding of [125I]ICYP. The NEM induced reduction in [125I]ICYP binding can be reversed by reconstitution with purified exogenous G proteins (Go and Gi), demonstrating directly that high affinity binding of [125I]ICYP to 5-HT1B sites is dependent on G proteins. The effects of Mg2+ ion, guanine nucleotides, NEM and G protein reconstitution on [125I]ICYP and ±CYP binding are all hallmarks of agonist binding to G protein linked receptors. The effect of GTP, however, is quantitatively much less for the binding of these pindolol derivatives than for the binding of 5-HT, a presumed full agonist at 5-HT1B sites. The relatively slight stabilization of [125I]ICYP and ±CYP binding conferred by G protein/5-HT1B receptor interaction may reflect the molecular events underlying previous observations that these compounds are partial 5-HT1B agoinists.  相似文献   

16.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

17.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

18.
Bacterial manganese superoxide dismutase (MnSOD) has been shown to localize to the chromosomal portion of the cell and impart protection from ionizing radiation to DNA. The binding affinity of bacterial MnSOD to non-sequence specific double stranded oligomeric DNA has been quantitated previously by nitrocellulose filter binding and gel shift assays. In the current study we have examined the equilibrium binding of Escherichia coli MnSOD to poly(U), poly(A), poly(C), poly(dU) and double-stranded (ds) DNA. Equilibrium association constant, Kobs, was measured by monitoring intrinsic tryptophan fluorescence quenching. Based on the extent of quenching, Kobs was determined as a function of monovalent salt (MX) concentration and type, as well as temperature, from which ΔG°obs and ΔH°obs were determined. It was found that the polynucleotides bind to MnSOD in the following affinity hierarchy, poly(dU) > poly(U) > dsDNA > poly(A) > poly(C). The differences in the hierarchy were not large in magnitude as the poly(dU) bound with less than a 100-fold higher affinity than poly(C) at any given [MX]. For each polynucleotide, Kobs decreases only slightly with increasing [K+], surprising for a relatively non-specific nucleic acid protein. Thus, our finding that MnSOD can bind to RNA leads to the possibility that MnSOD may confer protection to RNA, as well. This is, as of yet, untested. Typically one would expect strong electrostatic interactions to dominate a non-specific binding event like that, but our results show an unexpectedly strong non-electrostatic contribution to the binding.  相似文献   

19.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

20.
The binding of TNP-ATP (2 or 3-O-(2,4,6-trinitrophenyl)-ATP) to cytochrome c oxidase (COX) from bovine heart and liver and to the two-subunit COX of Paracoccus denitrificans was measured by its change of fluorescence. Three binding sites, two with high (dissociation constant Kd = 0.2 µM) and one with lower affinity (Kd = 0.9 µM), were found at COX from bovine heart and liver, while the Paracoccus enzyme showed only one binding site (Kd = 3.6 µM). The binding of [35S]ATPaS was measured by equilibrium dialysis and revealed seven binding sites at the heart enzyme (Kd = 7.5 µM) and six at the liver enzyme (Kd = 12 µM). The Paracoccus enzyme had only one binding site (Kd = 16 µM). The effect of variable intraliposomal ATP/ADP ratios, but at constant total concentration of [ATP + ADP] = 5 mM, on the H+/e- stoichiometry of reconstituted COX from bovine heart and liver were studied. Above 98% ATP the H+/e- stoichiometry of the heart enzyme decreased to about half of the value measured at 100% ATP. In contrast, the H+/e- stoichiometry of the liver enzyme was not influenced by the ATP/ADP ratio. It is suggested that high intramitochondrial ATP/ADP ratios, corresponding to low cellular work load, will decrease the efficiency of energy transduction and result in elevated thermogenesis for the maintenance of body temperature. (Mol Cell Biochem 174: 131–135, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号