首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heo J  Campbell SL 《Biochemistry》2006,45(7):2200-2210
Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. We have previously shown that both NO/O(2) (via nitrogen dioxide, (*)NO(2)) and superoxide radical anion (O(2)(*)(-)) promote Ras guanine nucleotide dissociation. We now show that hydrogen peroxide in the presence of transition metals (i.e., H(2)O(2)/transition metals) and peroxynitrite also trigger radical-based Ras guanine nucleotide dissociation. The primary redox-active reaction species derived from H(2)O(2)/transition metals and peroxynitrite is O(2)(*)(-) and (*)NO(2), respectively. A small fraction of hydroxyl radical (OH(*)) is also present in both. We also show that both carbonate radical (CO(3)(*)(-)) and (*)NO(2), derived from the mixture of peroxynitrite and bicarbonate, facilitate Ras guanine nucleotide dissociation. We further demonstrate that NO/O(2) and O(2)(*)(-) promote Ras GDP exchange with GTP in the presence of a radical-quenching agent, ascorbate, or NO, and generation of Ras-GTP promotes high-affinity binding of the Ras-binding domain of Raf-1, a downstream effector of Ras. S-Nitrosylated Ras (Ras-SNO) can be formed when NO serves as a radical-quenching agent, and hydroxyl radical but not (*)NO(2) or O(2)(*)(-) can further react with Ras-SNO to modulate Ras activity in vitro. However, given the lack of redox specificity associated with the high redox potential of OH(*), it is unclear whether this reaction occurs under physiological conditions.  相似文献   

2.
4,5 diaminofluorescein (DAF-2) is increasingly utilized as a fluorescent detector for nitric oxide (*NO) in cells and tissues. In oxygenated solutions, reactive nitrogen species derived from (*) NO autoxidation nitrosate DAF-2 to yield the highly fluorescent DAF-2 triazole. In the present study, we investigated the nitrosation of DAF-2 at a neutral pH by absorption and fluorescence spectroscopy using NONOates as chemical sources of (*) NO. We found that both chemically synthesized peroxynitrite and horseradish peroxidase in the presence of hydrogen peroxide (H(2)O(2)) oxidized DAF-2 to a relatively stable nonfluorescent intermediate (t(1/2) approximately 90 s). Oxidation of DAF-2 prior to the addition of the z.rad;NO donor DEA/NO resulted in an increase in fluorescence that was approximately 7-fold higher than treatment with DEA/NO alone. The increase in DAF-2 triazole formation upon oxidation of DAF-2 was confirmed by high performance liquid chromatography. Peroxynitrite generated in situ from the equimolar production of (*) NO and superoxide (O(2)(*-)) also increased the yields of DAF-2 triazole formation, which was completely inhibited when O(2)(*-) was in excess of (*) NO. We propose that DAF-2 is oxidized to a free radical intermediate that directly reacts with (*) NO, thereby bypassing the requirement for (*)NO autoxidation for the formation of DAF-2 triazole. Our findings indicate that DAF-2 fluorometric assays are quantitatively difficult to interpret in cells and in solution when oxidants and (*) NO are co-generated.  相似文献   

3.
S-Nitrosoglutathione (GSNO), a physiologically relevant nitric oxide ((*)NO) donor, exhibits antioxidant, anti-ischemic, and antiplatelet properties. The exact mechanism of (*)NO release from GSNO in biological systems has not been determined. Both copper ions and copper-containing enzymes have been shown to catalyze (*)NO release from GSNO. In this study we observed that copper-zinc superoxide dismutase (Cu,ZnSOD) in the presence of H(2)O(2) caused a rapid decomposition of GSNO, forming oxidized glutathione (GSSG) and (*)NO. The cupric ions (Cu(2+)) released from Cu,ZnSOD were bound to the glutamate moiety of GSNO, yielding a 2:1 (GSNO)(2)Cu(2+) complex. Strong chelators of cupric ions, such as histidine and diethylenetriaminepentaacetic acid, inhibited the formation of (GSNO)(2)Cu(2+) complex, GSSG, and (*)NO. GSSG alone inhibited Cu(2+)-induced decomposition of GSNO. This effect is attributed to complexation of copper by GSSG. We conclude that binding of copper to GSNO is obligatory for (*)NO release from GSNO; however, the rate of this reaction was considerably slowed due to binding of Cu(2+) by GSSG. The glutamate moiety in GSNO and GSSG controls copper-catalyzed (*)NO release from GSNO. Cu,ZnSOD and H(2)O(2) enhanced peroxidation of unsaturated lipid that was inhibited by GSNO. The antioxidant function of GSNO is related to the sequestering of copper by GSNO and its ability to slowly release (*)NO. Implications of these findings are discussed in relation to GSNO-induced cardioprotection and to neuropathological processes.  相似文献   

4.
Peroxynitrite (ONOO(-)/ONOOH) is generally expected to be formed in vivo from the diffusion-controlled reaction between superoxide (O(2)) and nitric oxide ((*)NO). In the present paper we show that under aerobic conditions the nitroxyl anion (NO(-)), released from Angeli's salt (disodium diazen-1-ium-1,2,2-triolate, (-)ON=NO(2)(-)), generated peroxynitrite with a yield of about 65%. Simultaneously, hydroxyl radicals are formed from the nitroxyl anion with a yield of about 3% via a minor, peroxynitrite-independent pathway. Further experiments clearly underline that the chemistry of NO(-) in the presence of oxygen is mainly characterized by peroxynitrite and not by HO( small middle dot) radicals. Quantum-chemical calculations predict that peroxynitrite formation should proceed via intermediary formation of (*)NO and O(2), probably by an electron-transfer mechanism. This prediction is supported by the fact that H(2)O(2) is formed during the decay of NO(-) in the presence of superoxide dismutase (Cu(II),Zn-SOD). Since the nitroxyl anion may be released endogenously by a variety of biomolecules, substantial amounts of peroxynitrite might be formed in vivo via NO(-) in addition to the "classical" ( small middle dot)NO + O(2)() pathway.  相似文献   

5.
GSNO (S-nitrosoglutathione) is emerging as a key regulator in NO signalling as it is in equilibrium with S-nitrosated proteins. Accordingly, it is of great interest to investigate GSNO metabolism in terms of competitive pathways and redox state. The present study explored ADH3 (alcohol dehydrogenase 3) in its dual function as GSNOR (GSNO reductase) and glutathione-dependent formaldehyde dehydrogenase. The glutathione adduct of formaldehyde, HMGSH (S-hydroxymethylglutathione), was oxidized with a k(cat)/K(m) value approx. 10 times the k(cat)/K(m) value of GSNO reduction, as determined by fluorescence spectroscopy. HMGSH oxidation in vitro was greatly accelerated in the presence of GSNO, which was concurrently reduced under cofactor recycling. Hence, considering the high cytosolic NAD(+)/NADH ratio, formaldehyde probably triggers ADH3-mediated GSNO reduction by enzyme-bound cofactor recycling and might result in a decrease in cellular S-NO (S-nitrosothiol) content in vivo. Formaldehyde exposure affected S-NO content in cultured cells with a trend towards decreased levels at concentrations of 1-5 mM, in agreement with the proposed mechanism. Product formation after GSNO reduction to the intermediate semimercaptal responded to GSH/GSNO ratios; ratios up to 2-fold allowed the spontaneous rearrangement to glutathione sulfinamide, whereas 5-fold excess of GSH favoured the interception of the intermediate to form glutathione disulfide. The sulfinamide and its hydrolysis product, glutathione sulfinic acid, inhibited GST (glutathione transferase) activity. Taken together, the findings of the present study provide indirect evidence for formaldehyde as a physiological trigger of GSNO depletion and show that GSNO reduction can result in the formation of GST inhibitors, which, however, is prevented under normal cellular redox conditions.  相似文献   

6.
M Cudic  C Ducrocq 《Nitric oxide》2000,4(2):147-156
To investigate the protective effect of the anesthetic 2, 6-diisopropylphenol, or propofol, in oxidative processes in which (*)NO and peroxynitrite are involved, direct interactions were explored. The reactions of the highly lipophilic propofol with (*)NO in methanolic or aqueous buffered solutions under air were shown to produce the same compounds as those detected with peroxynitrite, but with very low yields and slow rates. In aqueous neutral medium, peroxynitrite (ONOO(-), ONOOCO(-)(2), ONOOH) was able to nitrate and oxidize propofol: In addition to oxidation products, quinone and quinone dimer, the formation of the 4-nitropropofol derivative was detected, increasing with peroxynitrite or CO(2) concentrations. Nitration reached 20% after the addition of 25 mM bicarbonate to an equimolecular mixture of peroxynitrite and propofol in methanol/phosphate-buffered solution (1/4,v/v) at pH 7.4. However, peroxynitrite either in methanol or in alkaline-buffered mixture (optimum pH 10-12) resulted in the rapid and almost complete transformation of propofol to an intermediate compound 1, which further decomposed to 4-nitrosopropofol. The transient compound 1 was obtained from either peroxynitrite or (*)NO in the presence of oxygen. From mass spectrometry determination of compound 1 we propose the involvement of the nitrosodioxyl radical ONOO(*), forming an adduct with the propofoxyl radical, to yield 4-nitrosodioxypropofol and finally 4-nitrosopropofol.  相似文献   

7.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

8.
Oxidative stress may cause tissue injury through activation of the precursors of matrix metalloproteinase (proMMPs). In this study, we observed glutathione (GSH)-dependent proMMP activation induced by peroxynitrite, a potent oxidizing agent formed during inflammatory processes. Peroxynitrite strongly activated all three types of purified human proMMPs (proMMP-1, -8, and -9) in the presence of similar concentrations of GSH. Of the potential reaction products between peroxynitrite and GSH, only S-nitroglutathione (GSNO(2)) caused proMMP activation. Extensive S-glutathiolation of the proMMP protein occurred during activation of proMMP by peroxynitrite and GSH, as shown by radiolabeling studies with [(35)S]GSH or [(3)H]GSH. Evidence of appreciable S-glutathiolation persisted even after dithiothreitol and protein-denaturing treatment, however, suggesting that some S-glutathiolation did not occur through formation of simple mixed disulfide. Matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry indicated that not only peroxynitrite plus GSH but also synthetic GSNO(2) produced dithiothreitol-resistant S-glutathiolation of the synthetic peptide PRCGVPD, which is a well conserved Cys-containing sequence of the propeptide autoinhibitory domain of proMMPs. PRCGVPD S-glutathiolation is presumed to be formed through glutathione disulfide S-oxide (GS(O)SR), based on the m/z 1064. Our results illustrate a unique mechanism of oxidative proMMP activation and oxidative tissue injury during inflammation.  相似文献   

9.
Flash photolysis of S-nitrosoglutathione (GSNO) in aerated solutions at pH 10 gave rise to an absorption with a maximum around 310-320 nm. This peak is spectrally similar to that displayed by ONOO-. The decay kinetics of this absorption was compared to that of authentic ONOO-, generated independently. An excellent correlation was obtained. Further proof of ONOO- generation was provided by HPLC studies showing the production of 3-nitrotyrosine on irradiation of GSNO in the presence of tyrosine at pH 7.4. In addition, the nitration yield was increased approximately 5-fold in the presence of bicarbonate and totally eliminated with DMPO, indicating the requirement of a radical intermediate for peroxynitrite production during S-nitrosothiol photolysis.  相似文献   

10.
Although the nitric oxide (.NO)-mediated nitrosation of thiol-containing molecules is increasingly recognized as an important post-translational modification in cell signaling and pathology, little is known about the factors that govern this process in vivo. In the present study, we examined the chemical pathways of nitrosothiol (RSNO) production at low micromolar concentrations of .NO. Our results indicate that, in addition to nitrosation by the .NO derivative dinitrogen trioxide (N2O3), RSNOs may be formed via intermediate one-electron oxidation of thiols, possibly mediated by nitrogen dioxide (.NO2), and the subsequent reaction of thiyl radicals with .NO. In vitro, the formation of S-nitrosoglutathione (GSNO) from .NO and excess glutathione (GSH) was accompanied by the formation of glutathione disulfide, which could not be ascribed to the secondary reaction of GSH with GSNO. Superoxide dismutase significantly increased GSNO yields and the thiyl radical trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), inhibited by 45 and 98% the formation of GSNO and GSSG, respectively. Maximum nitrosation yields were obtained at an oxygen concentration of 3%, whereas higher oxygen tensions decreased GSNO and increased GSSG formation. When murine fibroblasts were exposed to exogenous .NO, RSNO formation was sensitive to DMPO and oxygen tension in a manner similar to that observed with GSH alone. Our data indicate that RSNO formation is favored at oxygen concentrations that typically occur in tissues. Nitrosothiol formation in vivo depends not only on the availability of .NO and O2 but also on the degree of oxidative stress by affecting the steady-state concentration of thiyl radicals.  相似文献   

11.
Oxidation and nitrosation in the nitrogen monoxide/superoxide system.   总被引:2,自引:0,他引:2  
Based on the previous report of McCord and co-workers (Crow, J. P., Beckman, J. S., and McCord, J. M. (1995) Biochemistry 34, 3544-3552), the zinc dithiolate active site of alcohol dehydrogenase (ADH) has been studied as a target for cellular oxidants. In the nitrogen monoxide ((*NO)/superoxide (O(2)) system, an equimolar generation of both radicals under peroxynitrite (PN) formation led to rapid inactivation of ADH activity, whereas hydrogen peroxide and ( small middle dot)NO alone reacted too slowly to be of physiological significance. 3-Morpholino sydnonimine inactivated the enzyme with an IC(50) value of 250 nm; the corresponding values for PN, hydrogen peroxide, and (*NO) were 500 nm, 50 microm, and 200 microm. When superoxide was generated at low fluxes by xanthine oxidase, it was quite effective in ADH inactivation (IC(50) (XO) approximately 1 milliunit/ml). All inactivations were accompanied by zinc release and disulfide formation, although no strict correlation was observed. From the two zinc thiolate centers, only the zinc Cys(2)His center released the metal by oxidants. The zinc Cys(4) center was also oxidized, but no second zinc atom could be found with 4-(2-pyridylazo)resorcinol (PAR) as a chelating agent except under denaturing conditions. Surprisingly, the oxidative actions of PN were abolished by a 2-3-fold excess of (*)NO under generation of a nitrosating species, probably dinitrogen trioxide. We conclude that in cellular systems, low fluxes of (*)NO and O(2) generate peroxynitrite at levels effective for zinc thiolate oxidations, facilitated by the nucleophilic nature of the complexed thiolate group. With an excess of (*)NO, the PN actions are blocked, which may explain the antioxidant properties of (*)NO and the mechanism of cellular S-nitrosations.  相似文献   

12.
S-nitrosothiol (RSNO) solutions represent a valuable source of nitric oxide and could be used as topical vasodilators, but their fast decomposition rate poses a serious obstacle to their potentially widespread therapeutic use. Our aim was to characterize and quantify the effect of pH on S-nitrosothiol formation and decomposition in simple aqueous solutions of S-nitrosoglutathione (GSNO), S-nitroso-N-acetylcysteine (SNAC) and S-nitroso-3-mercaptopropionic acid (SN3MPA). Furthermore, we investigated the effect of storage pH on the stability of GSNO incorporated in poly(ethylene glycol)/ poly(vinyl alcohol) matrices. S-nitrosothiol concentrations were measured spectrophotometrically and laser Doppler scanning method was used to assess dermal blood flow. GSH and NAC solutions reached a complete transformation to nitrosothiols when synthesized using acidic NaNO(2) solution. The initial concentration of all investigated RSNOs decreased more slowly with pH adjusted to mildly basic values (8.4-8.8) for the storage period. Polymer gels of PVA/PEG compositions at mildly basic storage pH further reduced the decomposition rate succeeding to contain 46.8% of the initial GSNO concentration for 25 days. This amount of topically administered GSNO was still capable of increasing the dermal blood flow over 200% in human subjects.  相似文献   

13.
Boccini F  Herold S 《Biochemistry》2004,43(51):16393-16404
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.  相似文献   

14.
Tyrosine nitration is a posttranslational modification observed in many pathologic states that can be associated with peroxynitrite (ONOO(-)) formation. However, in vitro, peroxynitrite-dependent tyrosine nitration is inhibited when its precursors, superoxide (O(2)*(-)) and nitric oxide ((*)NO), are formed at ratios (O(2)*(-)/(*)NO) different from one, severely questioning the use of 3-nitrotyrosine as a biomarker of peroxynitrite-mediated oxidations. We herein hypothesize that in biological systems the presence of superoxide dismutase (SOD) and the facile transmembrane diffusion of (*)NO preclude accumulation of O(2)*(-) and (*)NO radicals under flux ratios different from one, preventing the secondary reactions that result in the inhibition of 3-nitrotyrosine formation. Using an array of reactions and kinetic constants, computer-assisted simulations were performed in order to assess the flux of 3-nitrotyrosine formation (J(NO(2(-))Y)) during exposure to simultaneous fluxes of superoxide (J(O(2)*(-))) and nitric oxide (J((*)NO)), varying the radical flux ratios (J(O(2)*(-))/ J((*)NO)), in the presence of carbon dioxide. With a basic set of reactions, J(NO(2(-))Y) as a function of radical flux ratios rendered a bell-shape profile, in complete agreement with previous reports. However, when superoxide dismutation by SOD and (*)NO decay due to diffusion out of the compartment were incorporated in the model, a quite different profile of J(NO(2(-))Y) as a function of the radical flux ratio was obtained: despite the fact that nitration yields were much lower, the bell-shape profile was lost and the extent of tyrosine nitration was responsive to increases in either O(2)*(-) or (*)NO, in agreement with in vivo observations. Thus, the model presented herein serves to reconcile the in vitro and in vivo evidence on the role of peroxynitrite in promoting tyrosine nitration.  相似文献   

15.
Tao L  English AM 《Biochemistry》2003,42(11):3326-3334
Mass spectrometry and UV-vis absorption results support a mechanism for NO donation by S-nitrosoglutathione (GSNO) to recombinant human brain calbindin D(28K) (rHCaBP) that requires the presence of trace copper, added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO(4). The extent of copper-catalyzed rHCaBP S-nitrosation depends on the ratio of protein to GSNO and on the reaction time, and NO-transfer is prevented when copper chelators are present. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation, and the mechanism of CuZnSOD-catalyzed S-nitrosation involves reduction of the active-site Cu(II) by a number of the five free thiols in rHCaBP, giving rise to thiyl radicals. The Cu(I)ZnSOD formed catalyzes the reductive cleavage of GSNO present in solution to give GSH and release NO. rHCaBP thiyl radicals react with NO to yield the S-nitrosoprotein. Cu(II)ZnSOD is also reduced by GSH in a concentration-dependent manner up to 5 mM but not at higher GSH concentrations. However, unlike the rHCaBP thiyl radicals, GS(*) radicals dimerize to GSSG faster than their reaction with NO. The data presented here provide a biologically relevant mechanism for protein S-nitrosation by small S-nitrosothiols. S-nitrosation is rapidly gaining recognition as a major form of protein posttranslational modification, and the efficient S-nitrosation of CaBP by CuZnSOD/GSNO is speculated to be of neurochemical importance given that CaBP and CuZnSOD are abundant in neurons.  相似文献   

16.
《Free radical research》2013,47(2):214-225
S-nitrosothiol (RSNO) solutions represent a valuable source of nitric oxide and could be used as topical vasodilators, but their fast decomposition rate poses a serious obstacle to their potentially widespread therapeutic use. Our aim was to characterize and quantify the effect of pH on S-nitrosothiol formation and decomposition in simple aqueous solutions of S-nitrosoglutathione (GSNO), S-nitroso-N-acetylcysteine (SNAC) and S-nitroso-3-mercaptopropionic acid (SN3MPA). Furthermore, we investigated the effect of storage pH on the stability of GSNO incorporated in poly(ethylene glycol)/ poly(vinyl alcohol) matrices. S-nitrosothiol concentrations were measured spectrophotometrically and laser Doppler scanning method was used to assess dermal blood flow. GSH and NAC solutions reached a complete transformation to nitrosothiols when synthesized using acidic NaNO2 solution. The initial concentration of all investigated RSNOs decreased more slowly with pH adjusted to mildly basic values (8.4–8.8) for the storage period. Polymer gels of PVA/PEG compositions at mildly basic storage pH further reduced the decomposition rate succeeding to contain 46.8% of the initial GSNO concentration for 25 days. This amount of topically administered GSNO was still capable of increasing the dermal blood flow over 200% in human subjects.  相似文献   

17.
Reaction of peroxynitrite with the biological ubiquitous CO(2) produces about 35% yields of two relatively strong one-electron oxidants, CO(3) and ( small middle dot)NO(2), but the remaining of peroxynitrite is isomerized to the innocuous nitrate. Partial oxidant deactivation may confound interpretation of the effects of HCO3-/CO(2) on the oxidation of targets that react with peroxynitrite by both one- and two-electron mechanisms. Thiols are example of such targets, and previous studies have reported that HCO3-/CO(2) partially inhibits GSH oxidation by peroxynitrite at pH 7.4. To differentiate the effects of HCO3-/CO(2) on two- and one-electron thiol oxidation, we monitored GSH, cysteine, and albumin oxidation by peroxynitrite at pH 5.4 and 7.4 by thiol disappearance, oxygen consumption, fast flow EPR, and EPR spin trapping. Our results demonstrate that HCO3-/CO(2) diverts thiol oxidation by peroxynitrite from two- to one-electron mechanisms particularly at neutral pH. At acid pH values, thiol oxidation to free radicals predominates even in the absence of HCO3-/CO(2). In addition to the previously characterized thiyl radicals (RS.), we also characterized radicals derived from them such as the corresponding sulfinyl (RSO.) and disulfide anion radical (RSSR.-) of both GSH and cysteine. Thiyl, RSO. and RSSR.- are reactive radicals that may contribute to the biodamaging and bioregulatory actions of peroxynitrite.  相似文献   

18.
Nitric oxide (NO) is a powerful antiplatelet agent, but its notoriously short biological half-life limits its potential to prevent the activation of circulating platelets. Here we used diethylamine diazeniumdiolate (DEA/NO) as an NO generator to determine whether the antiplatelet effects of NO are prolonged by the formation of a durable, plasma-borne S-nitrosothiol reservoir. Preincubation of both platelet rich plasma (PRP) and washed platelets (WP) with DEA/NO (2 microm) for 1 min inhibited collagen-induced platelet aggregation by 82 +/- 5 and 91 +/- 2%, respectively. After 30 min preincubation with DEA/NO, NO was no longer detectable in either preparation, but aggregation remained markedly inhibited (72 +/- 7%) in PRP. In contrast, the inhibitory effect in WP was almost completely lost at this time (5 +/- 3%) but was partially restored (39 +/- 10%) in WP containing human serum albumin (1%) and fully restored by co-incubation with albumin and the low molecular weight (LMW) thiols, glutathione, (5 microm), cysteinyl-glycine (10 microm), or cysteine (10 microm). This NO-mediated effect was not seen with LMW thiols in the absence of albumin and was associated with S-nitrosothiol formation. Our results demonstrate that LMW thiols play an important role in both the formation and activation of an S-nitrosoalbumin reservoir that significantly prolongs the duration of action of NO.  相似文献   

19.
Formation of peroxynitrite from NO and O-(*2) is considered an important trigger for cellular tyrosine nitration under pathophysiological conditions. However, this view has been questioned by a recent report indicating that NO and O-(*2) generated simultaneously from (Z)-1-(N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino) diazen-1-ium-1,2-diolate] (SPER/NO) and hypoxanthine/xanthine oxidase, respectively, exhibit much lower nitrating efficiency than authentic peroxynitrite (Pfeiffer, S. and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285). The present study extends those earlier findings to several alternative NO/O-(*2)-generating systems and provides evidence that the apparent lack of tyrosine nitration by NO/O-(*2) is due to a pronounced decrease of nitration efficiency at low steady-state concentrations of authentic peroxynitrite. The decrease in the yields of 3-nitrotyrosine was accompanied by an increase in the recovery of dityrosine, showing that dimerization of tyrosine radicals outcompetes the nitration reaction at low peroxynitrite concentrations. The observed inverse dependence on peroxynitrite concentration of dityrosine formation and tyrosine nitration is predicted by a kinetic model assuming that radical formation by peroxynitrous acid homolysis results in the generation of tyrosyl radicals that either dimerize to yield dityrosine or combine with (*)NO(2) radical to form 3-nitrotyrosine. The present results demonstrate that very high fluxes (>2 microM/s) of NO/O-(*2) are required to render peroxynitrite an efficient trigger of tyrosine nitration and that dityrosine is a major product of tyrosine modification caused by low steady-state concentrations of peroxynitrite.  相似文献   

20.
The aim of this work was to assess the capacities of some ·NO-donors to release ·NO, and consequently NOx in aerobic medium, or to give peroxynitrite. The method was based on the differential reactivity of serotonin (5-HT) with either NOx or peroxynitrite, leading in phosphate-buffered solutions to 4-nitroso- and 4-nitro-5-HT formation, respectively. Yields and formation rates of 5-HT derivatives with ·NO-donor were compared to those obtained with authentic ·NO or peroxynitrite in similar conditions. Aside from the capacity of diazenium diolates (SPER/NO and DEA/NO) to release ·NO spontaneously, converting 5-HT exclusively to 4-nitroso-5-HT, all other ·NO donors must undergo redox reactions to produce ·NO. S-nitrosoglutathione (GSNO) and sodium nitroprus-side (SNP) modified 5-HT only in the presence of Cu2+, GSNO yielding 6 times more 4-nitroso-5-HT than SNP. Furthermore, in the presence of Cu+, the yield of ·NO-release from GSNO was 45%. The molsidomine metabolite (SIN-1), which was presumed to release both ·NO and O2/·- at pH 7.4, reacted with 5-HT differently, depending on the presence of reductant or oxidant. Under aerobic conditions, SIN-1 acted predominantly as a 5-HT oxidant and also as a poor ·NO and peroxynitrite donor (15% yield of ·NO-release and 14 % yield of peroxynitrite formation). The strong oxidant Cu2+, even in the presence of air oxygen, accelerated oxidation and increased ·NO release from SIN-1 up to 86%. Only a small part of SIN-1 gave simultaneously ·NO and O2/·- able to link together to give peroxynitrite, but other oxidants could enhance ·NO release from SIN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号