首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用非肥胖糖尿病型重症联合免疫缺陷型(NOD/SCID)小鼠模型, 比较了新鲜及培养后的CD34+和CD34-细胞在体内植入及重建造血能力。从新鲜脐血及培养后的单个核细胞(MNC)中分离出CD34+和CD34-细胞, 经尾静脉输注入经亚致死剂量照射的NOD/SCID小鼠体内, 6周后处死存活的小鼠, 取其骨髓、脾脏和外周血细胞, 分别进行细胞表型分析、造血集落形成单位和人特异性基因的检测。经检测, 输注CD34+细胞和混合细胞的小鼠, 其体内CD45+细胞及人源各系血细胞的含量相近, 两者均远远高于输注CD34-细胞的小鼠。输注培养后CD34-细胞的小鼠饲养6周后全部死亡,输注培养后CD34+细胞的小鼠存活率约为66.7%, 而输注培养后混合细胞的小鼠全部存活, 且在两组存活的小鼠体内均能检测到CD45+细胞及人源各系血细胞。结果表明: 无论是新鲜还是培养后的CD34+细胞均具有在NOD/SCID小鼠体内植入和重建造血能力, 而CD34-细胞不具有该能力, 但CD34-细胞与CD34+细胞同时输注有助于提高小鼠的存活率, 说明其对CD34+细胞在小鼠体内发挥植入和造血重建能力有一定的辅助作用。  相似文献   

2.
利用非肥胖糖尿病型重症联合免疫缺陷型(NOD/SCID)小鼠模型,比较了新鲜及培养后的CD34 和CD34-细胞在体内植入及重建造血能力.从新鲜脐血及培养后的单个核细胞(MNC)中分离出CD34 和CD34-细胞,经尾静脉输注入经亚致死剂量照射的NOD/SCID小鼠体内,6周后处死存活的小鼠,取其骨髓、脾脏和外周血细胞,分别进行细胞表型分析、造血集落形成单位和人特异性基因的检测.经检测,输注CD34' 细胞和混合细胞的小鼠,其体内CD45 细胞及人源各系血细胞的含量相近,两者均远远高于输注CD34-细胞的小鼠.输注培养后CD34-细胞的小鼠饲养6周后全部死亡,输注培养后CD34 细胞的小鼠存活率约为66.7%,而输注培养后混合细胞的小鼠全部存活,且在两组存活的小鼠体内均能检测到CD45 细胞及人源各系血细胞.结果表明:无论是新鲜还是培养后的CD34 细胞均具有在NOD/SCID小鼠体内植入和重建造血能力,而CD34-细胞不具有该能力,但CD34-细胞与CD34 细胞同时输注有助于提高小鼠的存活率,说明其对CD34 细胞在小鼠体内发挥植入和造血重建能力有一定的辅助作用.  相似文献   

3.
CD4+ central memory T cells play a critical role in the pathogenesis of simian immunodeficiency virus disease, and the CCR5 density on the surface of CD4 T cells is an important factor in human immunodeficiency virus (HIV)-1 disease progression. We hypothesized that quantifying central memory cells and CCR5 expression in the early stages of HIV-infection could provide useful prognostic information. We enrolled two different groups of acute HIV-infected subjects. One group progressed to CD4 T cell numbers below 250 cells/µl within 2 years (CD4 Low group), while the other group maintained CD4 cell counts above 450 cells/µl over 2 years (CD4 High group). We compared the CCR5 levels and percentage of CD4 subsets between the two groups during the 1st year of HIV infection. We found no differences between the two groups regarding the percentage of naïve, central memory and effector memory subsets of CD4 cells during the 1st year of HIV-1 infection. CCR5 levels on CD4+ CM subset was higher in the CD4 Low group compared with the CD4 High group during the 1st year of HIV-1 infection. High CCR5 levels on CD4 central memory cells in acute HIV infection are mostly associated with rapid disease progression. Our data suggest that low CCR5 expression on CD4 central memory cells protects CD4 cells from direct virus infection and favors the preservation of CD4+ T cell homeostasis.  相似文献   

4.
CCR5-tropic (R5) immunodeficiency virus type 1 (HIV-1) strains are highly transmissible during the early stage of infection in humans, whereas CXCR4-tropic (X4) strains are less transmissible. This study aimed to explore the basis for early phase R5 and X4 HIV-1 infection in vivo by using humanized mice dually challenged with R5 HIV-1NLAD8-D harboring DsRed and X4 HIV-1NL-E harboring EGFP. Whereas R5 HIV-1 replicated well, X4 HIV-1 caused only transient viremia with variable kinetics; however, this was distinct from the low level but persistent viremia observed in mice challenged with X4 HIV-1 alone. Flow cytometric analysis of HIV-1-infected cells revealed that X4 HIV-1 infection of CCR5+CD4+ T cells was significantly suppressed in the presence of R5 HIV-1. X4 HIV-1 was more cytopathic than R5 HIV-1; however, this was not the cause of restricted X4 HIV-1 infection because there were no significant differences in the mortality rates of CCR5+ and CCR5 cells within the X4 HIV-1-infected cell populations. Taken together, these results suggest that restricted infection of CCR5+CD4+ T cells by X4 HIV-1 (occurring via a still-to-be-identified mechanism) might contribute to the preferential transmission of R5 HIV-1 during the early phase of infection.  相似文献   

5.
We previously reported on a panel of HIV-1 clade B envelope (Env) proteins isolated from a patient treated with the CCR5 antagonist aplaviroc (APL) that were drug resistant. These Envs used the APL-bound conformation of CCR5, were cross resistant to other small-molecule CCR5 antagonists, and were isolated from the patient''s pretreatment viral quasispecies as well as after therapy. We analyzed viral and host determinants of resistance and their effects on viral tropism on primary CD4+ T cells. The V3 loop contained residues essential for viral resistance to APL, while additional mutations in gp120 and gp41 modulated the magnitude of drug resistance. However, these mutations were context dependent, being unable to confer resistance when introduced into a heterologous virus. The resistant virus displayed altered binding between gp120 and CCR5 such that the virus became critically dependent on the N′ terminus of CCR5 in the presence of APL. In addition, the drug-resistant Envs studied here utilized CCR5 very efficiently: robust virus infection occurred even when very low levels of CCR5 were expressed. However, recognition of drug-bound CCR5 was less efficient, resulting in a tropism shift toward effector memory cells upon infection of primary CD4+ T cells in the presence of APL, with relative sparing of the central memory CD4+ T cell subset. If such a tropism shift proves to be a common feature of CCR5-antagonist-resistant viruses, then continued use of CCR5 antagonists even in the face of virologic failure could provide a relative degree of protection to the TCM subset of CD4+ T cells and result in improved T cell homeostasis and immune function.Entry of human immunodeficiency virus (HIV) into target cells is a complex, multistep process that is initiated by interactions between the viral envelope (Env) protein gp120 and the host cell receptor CD4, which trigger conformational changes in gp120 that form and orient the coreceptor binding site (9, 24). Upon binding to coreceptor, which is either CCR5 or CXCR4 for primary HIV isolates, Env undergoes further conformational changes resulting in insertion of the gp41 fusion peptide into the host cell membrane and gp41-mediated membrane fusion (8, 15, 26). Targeting stages of the HIV entry process with antiretroviral drugs is a productive method of inhibiting HIV replication, as demonstrated by the potent antiviral effects of small-molecule CCR5 antagonists and fusion inhibitors (23, 35, 49). As with other antiretroviral drugs, HIV can develop resistance to entry inhibitors, and a detailed understanding of viral and host determinants of resistance will be critical to the optimal clinical use of these agents.The coreceptor binding site that is induced by CD4 engagement consists of noncontiguous regions in the bridging sheet and V3 loop of gp120 (4, 18, 42, 43, 50). Interactions between gp120 and CCR5 occur in at least two distinct areas: (i) the bridging sheet and the stem of the V3 loop interact with sulfated tyrosine residues in the N′ terminus of CCR5, and (ii) the crown of the V3 loop is thought to engage the extracellular loops (ECLs), particularly ECL2, of CCR5 (10-12, 14, 18, 28). Small-molecule CCR5 antagonists bind to a hydrophobic pocket in the transmembrane helices of CCR5 and exert their effects on HIV by altering the position of the ECLs, making them allosteric inhibitors of HIV infection (13, 31, 32, 46, 52). The conformational changes in CCR5 that are induced by CCR5 antagonists vary to some degree with different drugs, as evidenced by differential binding of antibodies and chemokines to various drug-bound forms of CCR5 (47, 54).CCR5 antagonists are unusual among antiretroviral agents in that they bind to a host protein rather than a viral target, and therefore the virus cannot directly mutate the drug binding site to evade pharmacologic pressure. Nevertheless, HIV can escape susceptibility to CCR5 antagonists. One mechanism by which this occurs is the use of the alternative HIV coreceptor, CXCR4. In vivo, this has most often been manifest as the outgrowth of R5/X4-tropic HIV isolates that were present in the patient''s circulating viral swarm prior to therapy (17, 27, 55). A second mechanism of HIV resistance to CCR5 antagonists is the use of drug-bound CCR5 as a coreceptor for entry. Resistant viruses that utilize drug-bound CCR5 have been identified following in vitro passaging with multiple CCR5 antagonists (1, 2, 22, 33, 36, 51, 56). Recently, we identified a panel of viral Envs able to use aplaviroc (APL)-bound CCR5 that were isolated from a patient (21, 48). The Envs from this patient were cross resistant to the CCR5 antagonists AD101, TAK779, SCH-C, and maraviroc. Surprisingly, this antiretroviral-naïve patient harbored Envs resistant to aplaviroc prior to the initiation of therapy. In the present study, we have examined viral and host factors that contribute to aplaviroc resistance and examined the consequences of resistance for viral tropism. Aplaviroc resistance determinants were located within the V3 loop of gp120, although additional residues diffusely spread throughout the gp120 and gp41 proteins modulated the magnitude of drug resistance. The resistant virus displayed altered interactions between gp120 and CCR5 such that the virus became critically dependent upon the N′ terminus of drug-bound CCR5. This differential recognition of CCR5 in the presence of aplaviroc was also associated with increased dependence on a higher CCR5 receptor density for efficient virus infection and a tropism shift toward effector memory cells on primary CD4+ T cells.  相似文献   

6.
The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism.  相似文献   

7.
8.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

9.
Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells.  相似文献   

10.
11.
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact.  相似文献   

12.

Background

Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4+CD25+ regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4+CD25+ regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease.

Methodology/Principal Findings

To test these hypotheses, we used the well-documented ability of complete Freund''s adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4+CD25+ regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4+CD25+ cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4+CD25+Foxp3+ cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4+CD25+ cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4+CD25+ cells in vitro compared to APC from untreated NOD mice.

Conclusions/Significance

These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC.  相似文献   

13.
14.
Percentages of activated T cells correlate with HIV-1 disease progression, but the underlying mechanisms are not fully understood. We hypothesized that HLA-DR(+) CD38(+) (DR(+) 38(+)) CD4(+) T cells produce the majority of HIV-1 due to elevated expression of CCR5 and CXCR4. In phytohemagglutinin (PHA)-stimulated CD8-depleted peripheral blood mononuclear cells (PBMC) infected with HIV-1 green fluorescent protein (GFP) reporter viruses, DR(-) 38(+) T cells constituted the majority of CCR5 (R5)-tropic (median, 62%) and CXCR4 (X4)-tropic HIV-1-producing cells (median, 61%), although cell surface CCR5 and CXCR4 were not elevated in this subset of cells. In lymph nodes from untreated individuals infected with R5-tropic HIV-1, percentages of CCR5(+) cells were elevated in DR(+) 38(+) CD4(+) T cells (median, 36.4%) compared to other CD4(+) T-cell subsets (median values of 5.7% for DR(-) 38(-) cells, 19.4% for DR(+) 38(-) cells, and 7.6% for DR(-) 38(+) cells; n = 18; P < 0.001). In sorted CD8(-) lymph node T cells, median HIV-1 RNA copies/10(5) cells was higher for DR(+) 38(+) cells (1.8 × 10(6)) than for DR(-) 38(-) (0.007 × 10(6)), DR(-) 38(+) (0.064 × 10(6)), and DR(+) 38(-) (0.18 × 10(6)) subsets (n = 8; P < 0.001 for all). After adjusting for percentages of subsets, a median of 87% of viral RNA was harbored by DR(+) 38(+) cells. Percentages of CCR5(+) CD4(+) T cells and concentrations of CCR5 molecules among subsets predicted HIV-1 RNA levels among CD8(-) DR/38 subsets (P < 0.001 for both). Median HIV-1 DNA copies/10(5) cells was higher in DR(+) 38(+) cells (5,360) than in the DR(-) 38(-) (906), DR(-) 38(+) (814), and DR(+) 38(-) (1,984) subsets (n = 7; P ≤ 0.031). Thus, DR(+) 38(+) CD4(+) T cells in lymph nodes have elevated CCR5 expression, are highly susceptible to infection with R5-tropic virus, and produce the majority of R5-tropic HIV-1. PBMC assays failed to recapitulate in vivo findings, suggesting limited utility. Strategies to reduce numbers of DR(+) 38(+) CD4(+) T cells may substantially inhibit HIV-1 replication.  相似文献   

15.
16.
17.
18.
19.
HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4+ T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases cis-infection of autologous CD4+ T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4+ T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype.  相似文献   

20.
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.Human immunodeficiency virus (HIV)-specific CD8+ cytotoxic T cells (CTLs) play a central role in the control of HIV type 1 (HIV-1) during acute and chronic phases of an HIV-1 infection (5, 29, 34). However, HIV-1 escapes from the immune surveillance of CD8+ CTLs by mechanisms such as mutations of immunodominant CTL epitopes and downregulation of major histocompatibility complex class I (MHC-I) molecules on the infected cells (9, 11, 12, 49). Therefore, most HIV-1-infected patients without highly active antiretroviral therapy (HAART) develop AIDS eventually.HIV-1-specific CD4+ T cells also play an important role in host immune responses against HIV-1 infections. An inverse association of CD4+ T-cell responses with viral load in chronically HIV-1-infected patients was documented in a series of earlier studies (8, 36, 39, 41, 48), although the causal relationship between them still remains unclear (23). Classically, CD4+ T cells help the expansion of CD8+ CTLs by producing growth factors such as interleukin-2 (IL-2) or by their CD40 ligand interaction with antigen-processing cells and CD8+ CTLs. In addition, CD4+ T cells provide activation of macrophages, which can professionally maintain CD8+ T-cell memory (17). On the other hand, the direct ability of virus-specific cytotoxic CD4+ T cells (CD4+ CTLs) to kill target cells has been widely observed in human virus infections such as those by human cytomegalovirus, Epstein-Barr virus (EBV), hepatitis B virus, Dengue virus, and HIV-1 (2, 4, 10, 19, 30, 31, 38, 50). Furthermore, one study showed that mouse CD4+ T cells specific for lymphocytic choriomeningitis virus have cytotoxic activity in vivo (25). These results, taken together, indicate that a subset of effector CD4+ T cells develops cytolytic activity in response to virus infections.HIV-1-specific CD4+ CTLs were found to be prevalent in HIV-1 infections, as Gag-specific cytotoxic CD4+ T cells were detected directly ex vivo among peripheral blood mononuclear cells (PBMCs) from an HIV-1-infected long-term nonprogressor (31). Other studies showed that up to 50% of the CD4+ T cells in some HIV-1-infected donors can exhibit a clear cytolytic potential, in contrast to the fact that healthy individuals display few of these cells (3, 4). These studies indicate the real existence of CD4+ CTLs in HIV-1 infections.The roles of CD4+ CTLs in the control of an HIV-1 infection have not been widely explored. It is known that Gag-specific CD4+ CTLs can suppress HIV-1 replication in a human T-cell leukemia virus type 1-immortalized CD4+ T-cell line (31). However, the functions of CD4+ T cells specific for other HIV-1 antigens remain unclear. On the other hand, the abilities of CD4+ CTLs to suppress HIV-1 replication in infected macrophages and CD4+ T cells may be different, as in the case of CD8+ CTLs for HIV-1-infected macrophages (17). In this study, we identified Nef-specific CD4+ T cells and investigated their ability to kill HIV-1 R5 virus-infected macrophages and HIV-1 X4 virus-infected CD4+ T cells and to suppress HIV-1 replication in the infected macrophages and CD4+ T cells. The results obtained in the present study show for the first time the ability of HIV-1-specific CD4+ CTLs to suppress HIV-1 replication in natural host cells, i.e., macrophages and CD4+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号