首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the brain function characteristics of carbon monoxide poisoning patients using resting-state functional magnetic resonance imaging (fMRI) method. For this purpose, 12 carbon monoxide poisoning patients and healthy controls were subjected to resting-state fMRI scans separately. A regional homogeneity (ReHo) approach was used to analyze the brain function in carbon monoxide poisoning patients. Compared with control group, the value of ReHo in carbon monoxide poisoning group showed distinct decrease in bilateral superior frontal gyrus, middle frontal gyrus, right cuneus, left middle temporal gyrus, right insula, and cerebellum. Therefore, it was concluded that the brain functions in carbon monoxide poisoning patients were abnormal under the resting-state. The cuneate lobe function may indicate the degree of brain hypoxia and strengthening the cerebellar function training may promote the rehabilitation process.  相似文献   

2.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.  相似文献   

3.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

4.
X Lin  K Ding  Y Liu  X Yan  S Song  T Jiang 《PloS one》2012,7(8):e43373
Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.  相似文献   

5.

Background

Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging.

Methods

A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.

Results

Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.

Conclusion

Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.  相似文献   

6.

Aim

We sought to use a regional homogeneity (ReHo) approach as an index in resting-state functional magnetic resonance imaging (fMRI) to investigate the features of spontaneous brain activity within the default mode network (DMN) in patients suffering from bipolar depression (BD).

Methods

Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD) total score, and ReHo in regions with significant group differences.

Results

Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group.

Conclusions

Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.  相似文献   

7.
The majority of previous neuroimaging studies have demonstrated both structural and task-related functional abnormalities in adolescents with online gaming addiction (OGA). However, few functional magnetic resonance imaging (fMRI) studies focused on the regional intensity of spontaneous fluctuations in blood oxygen level-dependent (BOLD) during the resting state and fewer studies investigated the relationship between the abnormal resting-state properties and the impaired cognitive control ability. In the present study, we employed the amplitude of low frequency fluctuation (ALFF) method to explore the local features of spontaneous brain activity in adolescents with OGA and healthy controls during resting-state. Eighteen adolescents with OGA and 18 age-, education- and gender-matched healthy volunteers participated in this study. Compared with healthy controls, adolescents with OGA showed a significant increase in ALFF values in the left medial orbitofrontal cortex (OFC), the left precuneus, the left supplementary motor area (SMA), the right parahippocampal gyrus (PHG) and the bilateral middle cingulate cortex (MCC). The abnormalities of these regions were also detected in previous addiction studies. More importantly, we found that ALFF values of the left medial OFC and left precuneus were positively correlated with the duration of OGA in adolescents with OGA. The ALFF values of the left medial OFC were also correlated with the color-word Stroop test performance. Our results suggested that the abnormal spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology of OGA.  相似文献   

8.

Background

Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs).

Methodology/Principal Findings

Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration.

Conclusions

These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD.  相似文献   

9.
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.  相似文献   

10.
Pediatric bipolar disorder (PBD) is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially during resting state. Resting state brain activity measured by fMRI might help to explore neurobiological biomarkers of the disorder. Methods: Regional homogeneity (ReHo) was examined with resting-state fMRI (RS-fMRI) on 15 patients with PBD in manic state, with 15 age-and sex-matched healthy youth subjects as controls. Results: Compared with the healthy controls, the patients with PBD showed altered ReHo in the cortical and subcortical structures. The ReHo measurement of the PBD group was negatively correlated with the score of Young Mania Rating Scale (YMRS) in the superior frontal gyrus. Positive correlations between the ReHo measurement and the score of YMRS were found in the hippocampus and the anterior cingulate cortex in the PBD group. Conclusions: Altered regional brain activity is present in patients with PBD during manic state. This study presents new evidence for abnormal ventral-affective and dorsal-cognitive circuits in PBD during resting state and may add fresh insights into the pathophysiological mechanisms underlying PBD.  相似文献   

11.
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.  相似文献   

12.
In order to further the insight into the explanation of changed performance in mental transformation under microgravity, we discuss the change of performance in mental transformation and its relationship with altered regional homogeneity (ReHo) in resting-state brain by using simulated weightlessness model. Twelve male subjects with age between 24 and 31 received resting-state fMRI scan and mental transformation test both in normal condition and immediately after 72 hours −6° head down tilt (HDT). A paired sample t-test was used to test the difference of behavior performance and brain activity between these two conditions. Compare with normal condition, subjects showed a changed performance in mental transformation with short term simulated microgravity and appeared to be falling. Meanwhile, decreased ReHo were found in right inferior frontal gyrus (IFG) and left inferior parietal lobule (IPL) after 72 hours −6° HDT, while increased ReHo were found in bilateral medial frontal gyrus (MFG) and left superior frontal gyrus (SFG) (P<0.05, corrected). Particularly, there was a significant correlation between ReHo values in left IPL and velocity index of mental transformation. Our findings indicate that gravity change may disrupt the function of right IFG and left IPL in the resting-state, among of which functional change in left IPL may contribute to changed abilities of mental transformation. In addition, the enhanced activity of the bilateral MFG and decreased activity of right IFG found in the current study maybe reflect a complementation effect on inhibitory control process.  相似文献   

13.
Low frequency oscillations are essential in cognitive function impairment in schizophrenia. While functional connectivity can reveal the synchronization between distant brain regions, the regional abnormalities in task-independent baseline brain activity are less clear, especially in specific frequency bands. Here, we used a regional homogeneity (ReHo) method combined with resting-state functional magnetic resonance imaging to investigate low frequency spontaneous neural activity in the three different frequency bands (slow-5∶0.01–0.027 Hz; slow-4∶0.027–0.08 Hz; and typical band: 0.01–0.08 Hz) in 69 patients with schizophrenia and 62 healthy controls. Compared with controls, schizophrenia patients exhibited decreased ReHo in the precentral gyrus, middle occipital gyrus, and posterior insula, whereas increased ReHo in the medial prefrontal cortex and anterior insula. Significant differences in ReHo between the two bands were found in fusiform gyrus and superior frontal gyrus (slow-4> slow-5), and in basal ganglia, parahippocampus, and dorsal middle prefrontal gyrus (slow-5> slow-4). Importantly, we identified significant interaction between frequency bands and groups in the inferior occipital gyrus and caudate body. This study demonstrates that ReHo changes in schizophrenia are widespread and frequency dependent.  相似文献   

14.
Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.  相似文献   

15.
Compelling evidence suggests that the glutamatergic system may contribute to the pathophysiology of major depression (MDD). While the D-amino acid oxidase activator (DAOA) gene can affect glutamatergic function, its genetic associations with MDD and abnormal resting-state brain activity have yet to be elucidated. A total of 488 patients with MDD and 480 controls were recruited to examine MDD association for the DAOA gene in a Chinese population, of whom 53 medication-free patients and 46 well-matched controls underwent resting-state functional magnetic resonance imaging for regional homogeneity (ReHo) analysis. The differences in ReHo between genotypes of interest were initially tested by the Student??s t test, and the 2?×?2 (genotypes?×?disease status) ANOVA was then performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Allelic association of the DAOA gene with MDD was observed for rs2391191, rs3918341, and rs778294 and haplotypic association for 2- and 3-SNP haplotypes. Six clusters in the cerebellum, right middle frontal gyrus and left middle temporal gyrus showed genotypic association between altered ReHo and rs2391191. The main effects of rs2391191 genotypes were found in the right culmen and right middle frontal gyrus. The left uvula and left middle temporal gyrus showed a genotypes?×?disease status interaction. Our results suggest that the DAOA gene may confer genetic risk of MDD. Genotypic effect of rs2391191 and its interaction with disease status may contribute to the altered ReHo in patients with MDD. Glutamatergic modulation may play an important role in alteration of the resting-state brain activities.  相似文献   

16.
We used a 2 x 2 factorial design to dissociate regions responding to taste intensity and taste affective valence. Two intensities each of a pleasant and unpleasant taste were presented to subjects during event-related fMRI scanning. The cerebellum, pons, middle insula, and amygdala responded to intensity irrespective of valence. In contrast, valence-specific responses were observed in anterior insula/operculum extending into the orbitofrontal cortex (OFC). The right caudolateral OFC responded preferentially to pleasant compared to unpleasant taste, irrespective of intensity, and the left dorsal anterior insula/operculuar region responded preferentially to unpleasant compared to pleasant tastes equated for intensity. Responses best characterized as an interaction between intensity and pleasantness were also observed in several limbic regions. These findings demonstrate a functional segregation within the human gustatory system. They also show that amygdala activity may be driven by stimulus intensity irrespective of valence, casting doubt upon the notion that the amygdala responds preferentially to negative stimuli.  相似文献   

17.
The relationship between structural changes in grey matter and treatment response in patients with late-life depression remains an intriguing area of research. This magnetic resonance imaging (MRI) study compares the baseline grey matter volume of elderly people with and without major depression (according to the DSM-IV-TR criteria) and assesses its association with antidepressant treatment response. Brain MRI scans were processed using statistical parametric mapping and voxel-based morphometry. The sample consisted of 30 patients with depression and 22 healthy controls. We found a significant volumetric reduction in the orbitofrontal cortex bilaterally in patients in comparison with controls. According to their remission status after antidepressant treatment, patients were classified as remitted or not remitted. Compared with controls, remitted patients showed a volumetric reduction in the orbitofrontal cortex bilaterally and in another cluster in the right middle temporal pole. Non-remitted patients showed an even greater volumetric reduction in the orbitofrontal cortex bilaterally compared with controls. To investigate predictive factors of remission after antidepressant treatment, we used a logistic regression. Both baseline Mini Mental State Examination score and baseline left superior lateral orbitofrontal cortex volume (standardized to the total grey matter volume) were associated with remission status. Our findings support the use of regional brain atrophy as a potential biomarker for depression. In addition, baseline cognitive impairment and regional grey matter abnormalities predict antidepressant response in patients with late-life depression.  相似文献   

18.
《Endocrine practice》2019,25(4):320-327
Objective: Previous neuroimaging studies have shown that diabetic retinopathy (DR) is accompanied by abnormal spontaneous brain activity. The purpose of the current study was to investigate changes in brain neural homogeneity in patients with DR using regional homogeneity (ReHo).Methods: A total of 56 subjects were recruited, including 28 patients with DR (16 female and 12 male patients) and 28 healthy controls (HCs) (16 female and 12 male patients) approximately matched for age and sex. All subjects underwent resting-state functional magnetic resonance imaging scans. The ReHo method was applied to explore neural homogeneity in the brain. The patients with DR were distinguished from HCs following the construction of receiver operating characteristic curves. The ReHo method was applied to assess changes in synchronous neural activity.Results: Compared to HCs, the ReHo values in the left and right posterior lobes of the cerebellum in patients with DR were significantly increased, whereas ReHo values in the right anterior cingulate gyrus, right cuneus, bilateral precuneus, and left-middle frontal gyrus were significantly decreased. In addition, the ReHo value in the right cuneus showed a positive correlation with the best corrected visual acuity in patients with DR.Conclusion: Dysfunctional brain homology may reveal the pathological mechanisms underlying the visual pathways of patients with DR.Abbreviations: AUC = area under the curve; BA = Brodmann area; DR = diabetic retinopathy; fMRI = functional magnetic resonance imaging; HC = healthy control; MRI = magnetic resonance imaging; rs-fMRI = resting-state fMRI; ReHo = regional homogeneity; ROC = receiver operating characteristic  相似文献   

19.
The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.  相似文献   

20.
Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号