共查询到20条相似文献,搜索用时 0 毫秒
1.
Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen’s d = 0.71 and 0.68) than for related ones (Cohen’s d = 0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting. 相似文献
2.
Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning. 相似文献
3.
4.
Alexander Prehn-Kristensen Kristin Lotzkat Eva Bauhofer Christian D. Wiesner Lioba Baving 《PloS one》2015,10(9)
Sleep supports the consolidation of declarative memory in children and adults. However, it is unclear whether sleep improves odor memory in children as well as adults. Thirty healthy children (mean age of 10.6, ranging from 8–12 yrs.) and 30 healthy adults (mean age of 25.4, ranging from 20–30 yrs.) participated in an incidental odor recognition paradigm. While learning of 10 target odorants took place in the evening and retrieval (10 target and 10 distractor odorants) the next morning in the sleep groups (adults: n = 15, children: n = 15), the time schedule was vice versa in the wake groups (n = 15 each). During encoding, adults rated odors as being more familiar. After the retention interval, adult participants of the sleep group recognized odors better than adults in the wake group. While children in the wake group showed memory performance comparable to the adult wake group, the children sleep group performed worse than adult and children wake groups. Correlations between memory performance and familiarity ratings during encoding indicate that pre-experiences might be critical in determining whether sleep improves or worsens memory consolidation. 相似文献
5.
Samuel Laventure Stuart Fogel Ovidiu Lungu Geneviève Albouy Pénélope Sévigny-Dupont Catherine Vien Chadi Sayour Julie Carrier Habib Benali Julien Doyon 《PLoS biology》2016,14(3)
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories. 相似文献
6.
Geneviève Albouy Virginie Sterpenich Gilles Vandewalle Annabelle Darsaud Steffen Gais Géraldine Rauchs Martin Desseilles Mélanie Boly Thanh Dang-Vu Evelyne Balteau Christian Degueldre Christophe Phillips André Luxen Pierre Maquet 《PloS one》2013,8(3)
The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task) and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI) and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep. 相似文献
7.
Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC) is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n = 51). In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM) (n = 9) and lights-off (7 PM) (n = 9) periods. In experiment-II, animals were prepared for polysomnographic recording (n = 8) and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD) (n = 9), Non-Sleep Deprived (NSD) (n = 9), Stress Control (SC) (n = 9) and Tone Control (n = 7). Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory. 相似文献
8.
Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation (“Ganzfeld”-stimulation or sleep) can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials – interspersed by an extinction block – which were followed by a two-hour break with or without visual deprivation (VD). Using additional adaptation and extinction blocks short and long (4 weeks) term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error) in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep), might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation. 相似文献
9.
The beneficial effect of sleep on memory has been well-established by extensive research on humans, but the neurophysiological mechanisms remain a matter of speculation. This study addresses the hypothesis that the fast oscillations known as ripples recorded in the CA1 region of the hippocampus during slow wave sleep (SWS) may provide a physiological substrate for long term memory consolidation. We trained rats in a spatial discrimination task to retrieve palatable reward in three fixed locations. Hippocampal local field potentials and cortical EEG were recorded for 2 h after each daily training session. There was an increase in ripple density during SWS after early training sessions, in both trained rats and in rats randomly rewarded for exploring the maze. In rats learning the place -reward association, there was a striking further significant increase in ripple density correlated with subsequent improvements in behavioral performance as the rat learned the spatial discrimination aspect of the task. The results corroborate others showing an experience-dependent increase in ripple activity and associated ensemble replay after exploratory activity, but in addition, for the first time, reveal a clear further increase in ripple activity related to associative learning based on spatial discrimination. 相似文献
10.
Ligia A. Papale Ketema N. Paul Nikki T. Sawyer Joseph R. Manns Sergio Tufik Andrew Escayg 《The Journal of biological chemistry》2010,285(22):16553-16561
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of transient depolarizing currents and play a critical role in the electrical signaling between neurons. A null mutation in the VGSC gene SCN8A, which encodes the transmembrane protein Nav1.6, was identified previously in a human family. Heterozygous mutation carriers displayed a range of phenotypes, including ataxia, cognitive deficits, and emotional instability. A possible role for SCN8A was also proposed in studies examining the genetic basis of attempted suicide and bipolar disorder. In addition, mice with a Scn8a loss-of-function mutation (Scn8amed-Tg/+) show altered anxiety and depression-like phenotypes. Because psychiatric abnormalities are often associated with altered sleep and hormonal patterns, we evaluated heterozygous Scn8amed-jo/+ mutants for alterations in sleep-wake architecture, diurnal corticosterone levels, and behavior. Compared with their wild-type littermates, Scn8amed-jo/+ mutants experience more non-rapid eye movement (non-REM) sleep, a chronic impairment of REM sleep generation and quantity, and a lowered and flattened diurnal rhythm of corticosterone levels. No robust differences were observed between mutants and wild-type littermates in locomotor activity or in behavioral paradigms that evaluate anxiety or depression-like phenotypes; however, Scn8amed-jo/+ mutants did show enhanced spatial memory. This study extends the spectrum of phenotypes associated with mutations in Scn8a and suggests a novel role for altered sodium channel function in human sleep disorders. 相似文献
11.
Zhoujie Ding Anna Bergman Christian Rutemark Rika Ouchida Hiroshi Ohno Ji-Yang Wang Birgitta Heyman 《PloS one》2013,8(11)
IgM antibodies specific for a certain antigen can enhance antibody responses when administered together with this antigen, a process believed to require complement activation by IgM. However, recent data show that a knock-in mouse strain, Cμ13, which only produces IgM unable to activate complement, has normal antibody responses. Moreover, the recently discovered murine IgM Fc receptor (FcµR or TOSO/FAIM3) was shown to affect antibody responses. This prompted the re-investigation of whether complement activation by specific IgM is indeed required for enhancement of antibody responses and whether the mutation in Cµ13 IgM also caused impaired binding to FcµR. The results show that IgM from Cµ13 and wildtype mice bound equally well to the murine FcµR. In spite of this, specific Cμ13 IgM administered together with sheep red blood cells or keyhole limpet hemocyanine was a very poor enhancer of the antibody and germinal center responses as compared with wildtype IgM. Within seconds after immunization, wildtype IgM induced deposition of C3 on sheep red blood cells in the blood. IgM which efficiently enhanced the T-dependent humoral immune response had no effect on activation of specific CD4+ T cells as measured by cell numbers, cell division, blast transformation, or expression of the activation markers LFA-1 and CD44 in vivo. These observations confirm the importance of complement for the ability of specific IgM to enhance antibody responses and suggest that there is a divergence between the regulation of T- and B-cell responses by IgM. 相似文献
12.
Svitlana Palchykova Raphaëlle Winsky-Sommerer Svitlana Palchykova Raphaëlle Winsky-Sommerer 《Chronobiology international》2013,30(4):682-696
There is increasing evidence that sleep facilitates memory acquisition and consolidation. Moreover, the sleep-wake history preceding memory acquisition and retention as well as circadian timing may be important. We showed previously that sleep deprivation (SD) following learning in OF1 mice impaired their performance on an object recognition task. The learning task was scheduled at the end of the 12 h dark period and the test 24 h later. To investigate the influence of the prominent circadian sleep-wake distribution typical for rodents, we now scheduled the learning task at the beginning of the dark period. Wakefulness following immediately after the learning task was attained either by gentle interference (SD; n?=?20) or by spontaneous wheel running (RW; n?=?20). Two control groups were used: one had no RW throughout the experiment (n?=?23), while the other group's wheel was blocked immediately after acquisition (n?=?16), thereby preventing its use until testing. Recognition memory, defined as the difference in exploration of a novel and of familiar objects, was assessed 24 h later during the test phase. Motor activity and RW use were continuously recorded. Remarkably, performance on the object recognition task was not influenced by the protocols; the waking period following acquisition did not impair memory, independent of the method inducing wakefulness (i.e., sleep deprivation or spontaneous running). Thus, all groups explored the novel object significantly longer than the familiar ones during the test phase. Interestingly, neither the amount of rest lost during the SD interventions nor the amount of rest preceding acquisition influenced performance. However, the total amount of rest obtained by the control and SD mice subjected to acquisition at “dark offset” correlated positively (r?=?0.66) with memory at test, while no such relationship occurred in the corresponding groups tested at dark onset. Neither the amount of running nor intermediate rest correlated with performance at test in the RW group. We conclude that interfering with sleep during the dark period does not affect object recognition memory consolidation. 相似文献
13.
Sho K. Sugawara Satoshi Tanaka Daisuke Tanaka Ayumi Seki Hitoshi T. Uchiyama Shuntaro Okazaki Tastuya Koeda Norihiro Sadato 《PloS one》2014,9(11)
In adults, sleep is necessary for the offline improvement of certain skills, such as sequential finger tapping, but whether children show a similar effect is still debatable. Here, we tested whether sleep is associated with offline performance improvement in children. Nine- and 11-year-old children trained on an explicit sequential finger tapping task. On the night following training, their parents observed and recorded the duration of each child’s sleep. The following day, all children performed a surprise retest session on the previously trained sequence. In both 9- and 11-year-old children, skill performance was significantly improved during the first retest session relative to the end of training on the previous day, confirming the offline improvement in performance. There was a significant correlation between the degree of improvement and sleep duration the night after training, suggesting that in children, as in adults, sleep is associated with offline skill enhancement. 相似文献
14.
Gregory J. Christie Charles M. Cook Brian J. Ward Matthew S. Tata Janice Sutherland Robert J. Sutherland Deborah M. Saucier 《PloS one》2013,8(2)
This study investigated how both sex and individual differences in a mental rotation test (MRT) influence performance on working memory (WM). To identify the neural substrate supporting these differences, brain electrical activity was measured using the event-related potential technique. No significant sex differences were observed in a test of verbal WM, however males were significantly faster than females to respond to probe stimuli in a test of spatial WM. This difference was no longer significant after controlling for differences in MRT score, suggesting that rotational ability mediates performance in the spatial memory task for both sexes. A posterior P300 was observed in both tasks as participants encoded information into memory, however the amplitude of the P300 correlated with RT in the spatial task but not in the verbal task. Individual differences in the MRT also correlated with RT and with the amplitude of the P300, but again only in the spatial task. After splitting the analysis by sex, partial correlations controlling for MRT revealed that for males, individual differences in rotational ability completely mediated the correlation between the P300 and RT in the spatial task. This mediating effect was not observed for the female participants. The results therefore suggest a relatively stronger association in males between innate mental rotational ability, spatial memory performance, and brain electrophysiological processes supporting spatial memory. 相似文献
15.
Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices'' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one''s representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only. 相似文献
16.
17.
Li Han Huaiqing Luo Fulian Huang Shaowen Tian Xiaoqun Qin 《Neurochemical research》2016,41(9):2345-2351
Apelin-13, as an endogenous neuropeptide, is the ligand for the G-protein-coupled receptor, APJ, which has recently been demonstrated to be involved in the process that contributes to learning and memory. Previous studies showed that apelin may be required for certain forms of learning and memory. Up to date, the role of apelin in fear memory has not been explored. In the present study, we tested the effects of apelin-13 (1.0, 2.0 and 4.0 µg/rat) on contextual fear conditioning (experiment 1), consolidation (experiment 2) and expression (experiment 3) in rats. A well established fear conditioning protocol was used, which contained three training phases: habituation, fear conditioning and test. Apelin-13 was i.c.v injected 10 min before conditioning (experiment 1), immediately after conditioning (experiment 2) or 10 min before testing (experiment 3). The values of percent freezing were used to measure fear. We found that only 2.0 µg apelin-13 administrations produced a decrease freezing in experiment 1. The most effective dose of apelin-13 (2.0 µg) was selected, but it had no effect on freezing in experiment 2 and 3. Furthermore, the decreased freezing in experiment 1 was not attributed to the deficits of locomotor activity and foot-shock sensitivity. These results, for the first time, indicated that apelin-13 impaired fear acquisition but not fear consolidation or expression. 相似文献
18.
Robert T Dauchy Aaron E Hoffman Melissa A Wren-Dail John P Hanifin Benjamin Warfield George C Brainard Shulin Xiang Lin Yuan Steven M Hill Victoria P Belancio Erin M Dauchy Kara Smith David E Blask 《Comparative medicine》2015,65(6):473-485
Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462–484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake–metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.Abbreviations: A-V, arterial–venous difference, ipRGC, intrinsically photosensitive retinal ganglion cell, LA, linoleic acid, 13-HODE, 13-hydroxyoctadecadienoic acid, TFA, total fatty acidsLight profoundly influences circadian, neuroendocrine, and neurobehavioral regulation in all mammals and is essential to life on our planet.2,15,28, 40 The light–dark cycle entrains the master biologic clock, located in the suprachiasmatic nucleus of the brain, in an intensity-, duration-, and wavelength-dependent manner.8-13 Photobiologic responses, including circadian rhythms of metabolism and physiology, are mediated by organic molecules called ‘chromophores,’ which are contained within a small subset of retinal cells, called the intrinsically sensitive retinal ganglion cells (ipRGC).16,29,31,36,41,49,53,59 In humans and rodents light quanta are detected by the chromophore melanopsin, which detects light quanta in principally the short-wavelength, blue-appearing portion of the spectrum (446 to 477 nm), and transmits its photic information via the retinohypothalamic tract to the ‘molecular clock’ of the suprachiasmatic nucleus. This region of the brain regulates the daily pineal gland production of the circadian neurohormone melatonin (N-acetyl-5-methoxytryptamine), which results in high levels produced at night and low levels during daytime.38,54 The daily, rhythmic melatonin signal provides temporal coordination of normal behavioral and physiologic functions including chronobiologic rhythms of locomotor activity,2 sleep-wake cycle,2,14 dietary and water intake,2,51 hormone secretion and metabolism.5,44,47,61 Alterations in light intensity, duration, and spectral quality at a given time of day,8-13,17,19-22,24,61 such as occurs in night-shift workers exposed to light at night,26,34,46,57 acutely suppresses endogenous melatonin levels in most mammalian species9,11,44,45,54,55 and may lead to various disease states, including metabolic syndrome5,61 and carcinogenesis.4-7,17,18Recent studies from our laboratory5,20,23-25,60,61 have demonstrated that relatively small changes in the spectral transmittance (color) of light passing through translucent amber (>590 nm), blue (>480 nm), and red-tinted (>640 nm) polycarbonate laboratory rodent cages, compared with standard polycarbonate clear cages (390 to 700 nm), during the light phase markedly influenced the normal nighttime melatonin signal and disrupted temporal coordination of metabolism and physiology.19,24,61 Most notable was our discovery that, in both male and female pigmented nude rats maintained in blue-tinted rodent cages, nighttime melatonin levels were as much as 7 times higher than normal nighttime peak levels in animals maintained in all other cage types.19 An earlier study in human subjects diagnosed with midwinter insomnia coupled with low nighttime melatonin levels demonstrated that daily exposure to intense morning bright polychromatic light therapy for up to one week resulted in a restoration of nocturnal melatonin levels to those of control subjects.35 In another study, exposure to blue-tinted (470 nm) LED light (100 lx) for approximately 20 min in the morning after 2 sleep-restricted (6 h) nights led to earlier onset of the melatonin surge at nighttime.30In the United States alone this year, approximately 240,000 men will be diagnosed with prostate cancer, and nearly 30,000 will die from this disease (National Cancer Institute; www.cancer.gov/). Epidemiologic studies have shown that night shift work, which involves circadian disruption, including nocturnal melatonin suppression, markedly increases prostate cancer risk in men.26,34,46,57,58 Both in vitro and in vivo studies have demonstrated that melatonin inhibits human prostate cancer growth, including that of androgen-receptor–negative, castration-resistant PC3 human prostate cancer cells.20,29,42,56 Cancer cells depend primarily on aerobic glycolysis (Warburg effect) over oxidative phosphorylation to meet their bioenergetic needs supporting biomass formation.5 The Warburg effect is characterized by increased cellular uptake of glucose and production of lactate despite an abundance of oxygen. Investigations have shown that signal transduction pathways that include AKT, MEK, NFκB, GS3Kβ, and PDK1 drive the Warburg effect.5,61 In addition, cancer cells rely on increased uptake of the ω6 fatty acid linoleic acid (LA), which is prevalent in the western diet.4-6 In most cancers, LA uptake occurs through a cAMP-dependent transport mechanism, and LA is metabolized to the mitogenic agent 13-hydroxyoctadecadienoic acid (13-HODE). In most tumors, 13-HODE plays an important role in enhancing downstream phosphorylation of ERK 1/2, AKT, and activation of the Warburg effect, thereby leading to increased cell proliferation and tumor growth.4-6 Melatonin, the principal neurohormone of the pineal gland and whose production is regulated by the suprachiasmatic nucleus,4,5 modulates processes of tumor initiation, progression, and growth in vivo.5 The circadian nocturnal melatonin signal not only inhibits LA uptake and metabolism, the Warburg effect in human cancer xenografts, and ultimately tumor growth, but it actually drives circadian rhythms in tumor metabolism, signal transduction activity, and cell proliferation. These effects are extinguished when melatonin production is suppressed by light exposure at night.5In the present investigation, we examined the hypothesis that the spectral transmittance (color) of short-wavelength (480 nm) bright light passing through blue-tinted standard laboratory rodent cages during the light phase not only amplifies the normal circadian nocturnal melatonin signal but also enhances the inhibition of the metabolism, signaling activity, and growth progression of human PC3 androgen-receptor–negative human prostate cancer xenografts in male nude rats. 相似文献
19.
20.
Yoshitaka Tashiro Makoto Urushitani Haruhisa Inoue Masato Koike Yasuo Uchiyama Masaaki Komatsu Keiji Tanaka Maya Yamazaki Manabu Abe Hidemi Misawa Kenji Sakimura Hidefumi Ito Ryosuke Takahashi 《The Journal of biological chemistry》2012,287(51):42984-42994
Evidence suggests that protein misfolding is crucially involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, controversy still exists regarding the involvement of proteasomes or autophagy in ALS due to previous conflicting results. Here, we show that impairment of the ubiquitin-proteasome system, but not the autophagy-lysosome system in motor neurons replicates ALS in mice. Conditional knock-out mice of the proteasome subunit Rpt3 in a motor neuron-specific manner (Rpt3-CKO) showed locomotor dysfunction accompanied by progressive motor neuron loss and gliosis. Moreover, diverse ALS-linked proteins, including TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurin were mislocalized or accumulated in motor neurons, together with other typical ALS hallmarks such as basophilic inclusion bodies. On the other hand, motor neuron-specific knock-out of Atg7, a crucial component for the induction of autophagy (Atg7-CKO), only resulted in cytosolic accumulation of ubiquitin and p62, and no TDP-43 or FUS pathologies or motor dysfunction was observed. These results strongly suggest that proteasomes, but not autophagy, fundamentally govern the development of ALS in which TDP-43 and FUS proteinopathy may play a crucial role. Enhancement of proteasome activity may be a promising strategy for the treatment of ALS. 相似文献