首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six new nonactic and homononactic acid derivatives, ethyl homononactate ( 1 ), ethyl nonactate ( 2 ), homononactyl homononactate ( 6 ), ethyl homononactyl nonactate ( 7 ), ethyl homononactyl homononactate ( 8 ), and ethyl nonactyl nonactate ( 9 ), as well as four known compounds, homononactic acid ( 3 ), nonactic acid ( 4 ), homononactyl nonactate ( 5 ), and bishomononactic acid ( 10 ), were isolated from culture broth of Bacillus pumilus derived from Breynia fruticosa. The structures of new compounds were elucidated by spectroscopic analysis and chemical methods. The optical purities of 1 – 6 were determined by HPLC/MS after treatment with L ‐phenylalanine methyl ester. The dimeric compounds 5 – 9 showed weak cytotoxic activities against five human cancer cell lines (IC50 19–100 μg/ml).  相似文献   

2.
Nonactin is the parent compound of a group of highly atypical polyketide metabolites produced by Streptomyces griseus subsp. griseus ETH A7796. In this paper we describe the isolation, sequencing, and analysis of 15? omitted?559 bp of chromosomal DNA, containing the potential nonactin biosynthesis gene cluster, from S. griseus subsp. griseus ETH A7796. Fourteen open reading frames were observed in the DNA sequence. Significantly, type II polyketide synthase (PKS) homologues were discovered in an apparent operon structure, which also contained the nonactate synthase gene (nonS), clustered with the tetranactin resistance gene. The deduced products of two of the genes (nonK and nonJ) are quite unusual ketoacyl synthase (KAS) alpha and KASbeta homologues. We speculate that nonactic acid, the polyketide precursor of nonactin, is synthesized by a type II PKS system.  相似文献   

3.
Proteins of the Smr family are the smallest multidrug transporters, about 110 amino acids long, that extrude various drugs in exchange with protons, thereby rendering bacteria resistant to these compounds. One of these proteins, EmrE, is an Escherichia coli protein, which has been cloned based on its ability to confer resistance to ethidium and methyl viologen and which has been extensively characterized. More than 60 genes coding for Smr proteins have been identified in several bacteria based on amino acid sequence similarity to the emrE gene. In this work we have analyzed the sequence similarity among these homologues and identified some distinct signature sequence elements and several fully conserved residues. Five of these homologues, from human pathogens Mycobacterium tuberculosis, Bordetella pertussis, and Pseudomonas aeruginosa and from Escherichia coli, were cloned into an E. coli expression system. The proteins were further characterized and show varying degrees of methyl viologen uptake into proteoliposomes and [(3)H]TPP binding in solubilized membranes. The homologues can also form mixed oligomers with EmrE that exhibit intermediate binding characteristics. A comparative study of various homologous proteins provides a tool for deciphering structure-function relationship and monomer-monomer interaction in multidrug transporters and in membrane proteins in general.  相似文献   

4.
The semisynthesis of homologues of aprotinin (BPTI) is described. The P1 amino acid residue of these homologues was substituted by other amino acids using peptide synthetic methods. The reactive-site-modified inhibitor (with the Lys15-Ala16 peptide bond hydrolyzed) was used as starting material. All carboxyl groups of the modified inhibitor were esterified with methanol, then the Lys15 methyl ester group was hydrolyzed selectively. Afterwards, Lys15 itself was split off. A new amino acid residue was incorporated by using water-soluble carbodiimide combined with an acylation catalyst. tert-Butyl-ester-protected amino acids were used for reinsertion. The method was tested by re-insertion of Lys15 to reconstitute the original inhibitor. Thirteen BPTI homologues with coded (Lys, Glu, Gly, Ala, Val, Ile, Leu) or uncoded amino acids (Abu, Ape, aIle, Ahx, tLeu, Neo) in position 15 were synthesized and the specificity of the inhibitors investigated. Amongst these, [Val15]BPTI was shown to be an excellent inhibitor for human polymorphonuclear leukocyte elastase having a complex dissociation constant of 0.11 nM. This inhibitor showed no detectable affinity to bovine pancreatic trypsin.  相似文献   

5.
Complete analysis of the phosphorylation of serine and threonine residues directly from biological extracts is still at an early stage and will remain a challenging goal for many years. Analysis of phosphorylated proteins and identification of the phosphorylated sites in a crude biological extract is a major topic in proteomics, since phosphorylation plays a dominant role in post-translational protein modification. Beta elimination of the serine/threonine-bound phosphate by alkali action generates (methyl)dehydroalanine. The reactivity of this group susceptible of nucleophilic attacks might be used as a tool for phosphoproteome analysis. Most of the known serine/threonine kinases recognize motifs in protein targets that are rich in lysine(s) and/or arginine(s). The (methyl)dehydroalanine resulting from beta elimination of the serine/threonine-bound phosphate by alkali action is likely to react with the amino groups of these neighboring amino acids. Furthermore, the addition reaction of dehydroalanine-peptides with a nucleophilic group more likely generates diastereoisomers derivatives. The internal cyclic bonds and/or the stereoisomer peptide derivatives thus generated confer resistance to trypsin cleavage and/or constitute stop signals for exopeptidases such as carboxypeptidase. This might form the basis of a method to facilitate the systematic identification of phosphorylated peptides.  相似文献   

6.
A series of arylalkanoate esters and alpha-acetamidoarylalkanoate esters were tested as substrates for alpha-chymotrypsin and subtilisin BPN'. Chymotrypsin hydrolysed N-acetyl-l-phenylalanine methyl ester and methyl 4-phenylbutyrate faster than their respective higher and lower homologues, whereas methyl 2-acetamido-6-phenylhexanoate and methyl 6-phenylhexanoate were better substrates for subtilisin than their lower homologues. N-Acetyl-l-tryptophan methyl ester and its analogue, N-acetyl-3-(1-naphthyl)-alanine methyl ester, were hydrolysed 23 times faster by chymotrypsin than by subtilisin. These results indicate that the binding site of alpha-chymotrypsin is roughly 1.1nm (11A) long and curved, whereas that of subtilisin is a longer system and less curved. The stereo-specificity during the hydrolysis of typical substrates by both enzymes was found to vary over a wide range. The enhancing effect of the alpha-acetamido group in the l-series of substrates and the detrimental effect in the d-series of substrates also varies considerably.  相似文献   

7.
The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.  相似文献   

8.
New renin inhibitors homologous with pepstatin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Four homologues of pepstatin, the potent but poorly soluble inhibitor of aspartic proteinases, were synthesized by coupling to the C-terminus of the natural pentapeptide the following amino acid residues: L-arginine methyl ester, L-aspartic acid, L-glutamic acid and the dipeptide L-aspartyl-L-arginine. The peptide-coupling reagent we used, benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate, allowed us to obtain readily pure pepstatin homologues with high yields (60-83%). Pepstatylarginine methyl ester and pepstatylglutamic acid were about one order of magnitude more water-soluble than pepstatin. The four homologues and pepstatin were tested in vitro as inhibitors for highly purified pig and human renins acting on the N-acetyltetradecapeptide substrate. The 50% inhibitory concentrations (IC50) of the homologues were ranged from 0.01 to 1 microM against porcine renin at pH 6.0 (pepstatin IC50 approximately 0.32 microM) and from 5.8 to 41 microM against human renin at pH 6.5 (pepstatin IC 50 approximately 17 microM). By three different graphical methods we showed that pepstatin and the four homologues behaved as competitive inhibitors for porcine renin. The most potent inhibitors were pepstatylaspartic acid and pepstatylglutamic acid, with inhibitory constants respectively 2- and 10-fold smaller than that of pepstatin. By coupling glutamic acid to pepstatin, the ratio solubility/Ki was increased by two orders of magnitude.  相似文献   

9.
Cyclosporin A and its homologues are synthesized by a single multifunctional enzyme from their precursor amino acids. Cyclosporin synthetase is a polypeptide chain with a molecular mass of approximately 800 kDa. In 3% polyacrylamide-sodium dodecyl sulfate gels it shows a single band of approximately 650 kDa, which appears to not be glycosylated. The enzyme could be purified to near-homogeneity in five steps. A 72-fold purification was obtained. All constitutive amino acids of cyclosporins are activated as thioesters via aminoadenylation by the same enzyme. Then N-methylation of the thioester-bound amino acids which are present in methylated form in the cyclosporin molecule takes place, whereby S-adenosyl-L-methionine serves as the methyl group donor. Methyltransferase activity is an integral entity of the enzyme; this could be shown by a photoaffinity labeling method. 4'-Phosphopantetheine is a prosthetic group of cyclosporin synthetase similar to other peptide and depsipeptide synthetases. Cyclosporin synthetase shows cross-reactions with monoclonal antibodies directed against enniatin synthetase.  相似文献   

10.
11.
12.
13.
A convenient synthesis of four new enantiomerically pure acidic amino acids is reported and their affinity at ionotropic glutamate receptors was determined. The new compounds are higher homologues of glutamic acid in which the molecular complexity has been increased by introducing an aromatic/heteroaromatic ring, that is a phenyl or a thiophene ring, that could give additional electronic interactions with the receptors. The results of the present investigation indicate that the insertion of an aromatic/heteroaromatic ring into the amino acid skeleton of glutamate higher homologues is well tolerated and this modification could be exploited to generate a new class of NMDA antagonists.  相似文献   

14.
β1,4-Galactosylation of plant N-glycans is a prerequisite for commercial production of certain biopharmaceuticals in plants. Two different types of galactosylated N-glycans have initially been reported in plants as the result of expression of human β1,4-galactosyltransferase 1 (GalT). Here we show that these differences are associated with differences at its N-terminus: the natural short variant of human GalT results in hybrid type N-glycans, whereas the long form generates bi-antennary complex type N-glycans. Furthermore, expression of non-mammalian, chicken and zebrafish GalT homologues with N-termini resembling the short human GalT N-terminus also induce hybrid type N-glycans. Providing both non-mammalian GalTs with a 13 amino acid N-terminal extension that distinguishes the two naturally occurring forms of human GalT, acted to increase the levels of bi-antennary galactosylated N-glycans when expressed in tobacco leaves. Replacement of the cytosolic tail and transmembrane domain of chicken and zebrafish GalTs with the corresponding region of rat α2,6-sialyltransferase yielded a gene whose expression enhanced the level of bi-antennary galactosylation even further.  相似文献   

15.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

16.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

17.
The relationships between structure and antioxidant activity of dihydrolipoic acid (DHLA) were studied using homologues of DHLA: bisonor-DHLA (a derivative which lacks two carbons in the hydrophobic tail), tetranor-DHLA (which lacks four carbons) and a methyl ester derivative. It was observed that: i) DHLA homologues with shorter hydrocarbon tails (i.e., bisnor- and tetranor-DHLA) had greater ability to quench superoxide radicals (O-2); ii) no differences among homologues with different chain lengths were found for peroxyl radical (ROO) scavenging in aqueous solution, and iii) DHLA was the best membrane antioxidant in terms of ROO scavening and lipid peroxidation inhibition. Differences among the DHLA homologues in their antioxidant properties in polar and apolar environments generally agreed with differences in their partition coefficients. The methyl ester was the least effective antioxidant both in aqueous phase and in membranes. Tetranor-DHLA was found not only to be less effective in preventing ROO-induced lipid peroxidation, but also to induce lipid peroxidation in the presence of residual iron. Thus, the complexity of biological systems seems to complicate generalizations on the correlation of molecular structure with antioxidant activity of DHLA.  相似文献   

18.
H J?rnvall 《FEBS letters》1999,456(1):85-88
Motifer is a software tool able to find directly in nucleotide databases very distant homologues to an amino acid query sequence. It focuses searches on a specific amino acid pattern, scoring the matching and intervening residues as specified by the user. The program has been developed for searching databases of expressed sequence tags (ESTs), but it is also well suited to search genomic sequences. The query sequence can be a variable pattern with alternative amino acids or gaps and the sequences searched can contain introns or sequencing errors with accompanying frame shifts. Other features include options to generate a searchable output, set the maximal sequencing error frequency, limit searches to given species, or exclude already known matches. Motifer can find sequence homologues that other search algorithms would deem unrelated or would not find because of sequencing errors or a too large number of other homologues. The ability of Motifer to find relatives to a given sequence is exemplified by searches for members of the transforming growth factor-beta family and for proteins containing a WW-domain. The functions aimed at enhancing EST searches are illustrated by the 'in silico' cloning of a novel cytochrome P450 enzyme.  相似文献   

19.
Phylogenetic analysis of archaeal PCNA homologues   总被引:2,自引:0,他引:2  
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. Eukaryotes and euryarchaeotes, which belong to one subdomain of Archaea, possess a single PCNA homologue, whereas two distinct PCNA homologues have been identified from Sulfolobus solfataricus, which belongs to the other archaeal subdomain, Crenarchaeota. We have cloned and sequenced two genes of PCNA homologues from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis. These genes, referred to as the Soh PCNA A gene and the Soh PCNA B gene, were found to encode 245 amino acids (aa) (27 kDa) and 248 aa (27 kDa), respectively. In deduced amino acid sequences of both PCNA homologues, the motif L/I-A-P-K/R, implicated in binding of PCNA with replication factor C (RFC), was identified. Phylogenetic analysis of all available archaeal PCNA homologues suggests that crenarchaeal homologues are divided into two groups. Group A consists of Soh PCNA A, one of the S. solfataricus PCNA homologues, and one of the Aeropyrum pernix PCNA homologues. The other crenarchaeal homologues form group B. Crenarchaeal PCNA homologues constitute a monophyletic subfamily. These results suggest that the evolution of crenarchaeal PCNA homologues has been characterized by one or two gene duplication events, which are assumed to have occurred after the split of the crenarchaeal and euryarchaeal lineages. Received: July 10, 2000 / Accepted: September 26, 2000  相似文献   

20.
In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tried to understand their common features. Using a yeast two-hybrid assay, we show that these MutL homologues can form heterodimers by interacting with the same amino acid residues of hMLH1, residues 492–742. In contrast, three hMLH1 partners, hMLH3, hPMS1 and hPMS2 contain the 36 homologous amino acid residues that interact strongly with hMLH1. Contrary to the previous studies, these homologous residues reside at the N-terminal regions of three subdomains conserved in MutL homologues in many species. Interestingly, these residues in hPMS2 and hMLH3 may form coiled-coil structures as predicted by the MULTICOIL program. Furthermore, we show that there is competition for the interacting domain in hMLH1 among the three other MutL homologues. Therefore, the quantitative balance of these three MutL heterodimers may be important in their functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号