首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium binding was studied with two regulatory light chains (RLC-a and RLC-b) of smooth muscle myosin of scallop. With the equilibrium dialysis method, the binding of 0.98 mol Ca2+ per mol of RLC-b was observed with a dissociation constant of 2.3 X 10(-5) M. Similar values for RLC-b, 1.9 X 10(-5) M, and RLC-a, 1.5 X 10(-5) M, were obtained by measuring the difference absorption spectrum induced by Ca2+. The difference molar absorption coefficient at 288 nm was 159 and 209 M-1 X cm-1 for RLC-a and RLC-b, respectively, while it was -34 M-1 X cm-1 for the regulatory light chain of striated muscle myosin of scallop (RLC-st). Proton NMR spectra of the three light chains were very similar to each other and were broader than those of other Ca2+ binding proteins, parvalbumin and calmodulin. The regulatory light chains may be more rigid than in these Ca2+ binding proteins. CD spectra were measured for the three light chains, and the estimated helix contents were 27, 29, and 24%, respectively, for RLC-a, RLC-b, and RLC-st. All these results in comparison with the primary structures led us to suppose that the polypeptide of regulatory light chains is folded in such a way that domain 4 becomes near to the calcium binding site of domain 1. The decrease in intact light chains on trypsin digestion was determined for the gel electrophoretic patterns. RLC-a was 6 times more susceptible to the tryptic digestion than RLC-b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Kinetic analysis of contracting fast and slow rabbit muscle fibers in the presence of the tension inhibitor 2,3-butanedione monoxime suggests that regulatory light chain (RLC) phosphorylation up-regulates the flux of weakly attached cross-bridges entering the contractile cycle by increasing the actin-catalyzed release of phosphate from myosin. This step appears to be separate from earlier Ca(2+) regulated steps. Small step-stretches of single skinned fibers were used to study the effect of phosphorylation on fiber mechanics. Subdivision of the resultant tension transients into the Huxley-Simmons phases 1, 2(fast), 2(slow), 3, and 4 reveals that phosphorylation reduces the normalized amplitude of the delayed rise in tension (stretch activation response) by decreasing the amplitudes of phase 3 and, to a lesser extent, phase 2(slow). In slow fibers, the RLC P1 isoform phosphorylates at least 4-fold faster than the P2 isoform, complicating the role of RLC phosphorylation in heart and slow muscle. We discuss the functional relevance of the regulation of stretch activation by RLC phosphorylation for cardiac and other oscillating muscles and speculate how the interaction of the two heads of myosin could account for the inverse effect of Ca(2+) levels on isometric tension and rate of force redevelopment (k(TR)).  相似文献   

4.
5.
6.
Malyshev SL 《Tsitologiia》2000,42(1):19-26
Current review is focused on regulatory functions of myosin light chains from different muscle types. Special attention is paid to myosin light chains from striated muscles. The present review considers mainly the relevant data provided after 1986.  相似文献   

7.
8.
BACKGROUND AND AIMS: Smooth muscle myosin monomers self-assemble in solution to form filaments. Phosphorylation of the 20-kD regulatory myosin light chain (MLC20) enhances filament formation. It is not known whether the phosphorylated and non-phosphorylated filaments possess the same structural integrity. METHODS: We purified myosin from bovine trachealis to form filaments, in ATP-containing zero-calcium solution during a slow dialysis that gradually reduced the ionic strength. Sufficient myosin light chain kinase and phosphatase, as well as calmodulin, were retained after the myosin purification and this enabled phosphorylation of MLC20 within 20-40s after addition of calcium to the filament suspension. The phosphorylated and non-phosphorylated filaments were then partially disassembled by ultrasonification. The extent of filament disintegration was visualized and quantified by atomic force microscopy. RESULTS: MLC20 phosphorylation reduced the diameter of the filaments and rendered the filaments more resistant to ultrasonic agitation. Electron microscopy revealed a similar reduction in filament diameter in intact smooth muscle when the cells were activated. CONCLUSION: Modification of the structural and physical properties of myosin filaments by MLC20 phosphorylation may be a key regulation step in smooth muscle where formation and dissolution of the filaments are required in the cells' adaptation to different cell length.  相似文献   

9.
We tested the hypothesis that increases in force at a given cytosolic Ca(2+) concentration (i.e., Ca(2+) sensitization) produced by muscarinic stimulation of canine tracheal smooth muscle (CTSM) are produced in part by mechanisms independent of changes in regulatory myosin light chain (rMLC) phosphorylation. This was accomplished by comparing the relationship between rMLC phosphorylation and force in alpha-toxin-permeabilized CTSM in the absence and presence of acetylcholine (ACh). Forces were normalized to the contraction induced by 10 microM Ca(2+) in each strip, and rMLC phosphorylation is expressed as a percentage of total rMLC. ACh (100 microM) plus GTP (1 microM) significantly shifted the Ca(2+)-force relationship curve to the left (EC(50): 0.39 +/- 0.06 to 0.078 +/- 0.006 microM Ca(2+)) and significantly increased the maximum force (104.4 +/- 4.8 to 120.2 +/- 2.8%; n = 6 observations). The Ca(2+)-rMLC phosphorylation relationship curve was also shifted to the left (EC(50): 1.26 +/- 0.57 to 0.13 +/- 0.04 microM Ca(2+)) and upward (maximum rMLC phosphorylation: 70.9 +/- 7.9 to 88.5 +/- 5. 1%; n = 6 observations). The relationships between rMLC phosphorylation and force constructed from mean values at corresponding Ca(2+) concentrations were not different in the presence and absence of ACh. We find no evidence that muscarinic stimulation increases Ca(2+) sensitivity in CTSM by mechanisms other than increases in rMLC phosphorylation.  相似文献   

10.
The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head–head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head–head interactions by an unknown mechanism. Computational modeling (Tama et al., 2005. J. Mol. Biol. 345, 837–854) suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin.  相似文献   

11.
The Ca2+ sensitivities of tonic (pulmonary and femoral artery) and phasic (portal vein and ileum) smooth muscles and the effects of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) and norepinephrine on Ca2+ sensitivity of force development and myosin light chain (MLC20) phosphorylation were determined in permeabilized preparations that retained coupled receptors and endogenous calmodulin. The Ca2+ sensitivity of force was higher (approximately 3-fold) in the tonic than in the phasic smooth muscles. The nucleotide specificity of Ca2+ sensitization was: GTP gamma S much greater than GTP greater than ITP much greater than CTP = UTP. Baseline phosphorylation (7% at pCa greater than 8) and maximal phosphorylation (58% at pCa 5.0) were both lower in portal vein than in femoral artery (20 and 97%). Norepinephrine and GTP gamma S increased phosphorylation at constant [Ca2+] (pCa 7.0-6.5). MLC20 phosphorylation induced by norepinephrine was completely inhibited by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S). In portal vein at pCa 5, GTP gamma S increased phosphorylation from 58%, the maximal Ca2(+)-activated value, to 75%, and at pCa greater than 8, from 7 to 13%. In femoral artery at pCa 5, neither phosphorylation (97%) nor force was affected by GTP gamma S, while at pCa greater than 8, GTP gamma S caused an increase in force (16% of maximum) with a borderline increase in MLC20 phosphorylation (from 20 to 27%). MLC20 phosphorylation (up to 100%) was positively correlated with force. The major results support the hypothesis that the G-protein coupled Ca2(+)-sensitizing effect of agonists on force development is secondary to increased MLC20 phosphorylation.  相似文献   

12.
A cAMP-dependent regulatory protein which modulates the phosphorylation of scallop myosin regulatory light chain-a (RLC-a) by RLC-a myosin kinase (aMK) (Sohma, H. & Morita, F. (1986) J. Biochem. 100, 1155-1163) was purified from the scallop smooth muscle. RLC-a is abundant in the opaque portion of scallop smooth muscle, one of the catch muscles. The regulatory protein for aMK was purified by employing successively DEAE Toyopearl ion exchange chromatography, Sepharose 4B-8(6-aminohexylamino)cAMP affinity chromatography, and Sephadex G 100 gel filtration. The molecular mass of the regulatory protein was 41 kDa, based on the mobility in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. With increasing amounts of the regulatory protein, the aMK activity decreased, and complete inhibition was observed at the concentration of twice that of aMK. The aMK activity inhibited by the regulatory protein was restored by the addition of cAMP. These results suggest that aMK is similar to a catalytic subunit of cAMP-dependent protein kinase, and the protein reported here is similar to its regulatory subunit. aMK may exist as an inactive form, as a combination with this regulatory protein, in vivo and be deinhibited by an increase in the intracellular concentration of cAMP. We discuss a possible correlation between the phosphorylation of RLC-a in myosin catalyzed by aMK and the catch state of the opaque portion of scallop smooth muscle.  相似文献   

13.
Smooth muscle myosin acts as a molecular motor only if the regulatory light chain (RLC) is phosphorylated. This subunit can be removed from myosin by a novel method involving the use of trifluoperazine. The motility of RLC-deficient myosin is very slow, but native properties are restored when RLC is rebound. Truncating 6 residues from the COOH terminus of the RLC had no effect on phosphorylated myosin's motor properties, while removal of the last 12 residues reduced velocity by approximately 30%. Very slow movement was observed once 26 residues were deleted, or with myosin containing only the COOH-terminal RLC domain. These two mutants thus mimicked the behavior of RLC-deficient myosin, with the important difference that the mutant myosins were monodisperse when assayed by sedimentation velocity and electron microscopy. The decreased motility therefore cannot be caused by aggregation. A common feature of RLC-deficient myosin and the mutant myosins that moved actin slowly was an increased myosin ATPase compared with dephosphorylated myosin, and a lower actin-activated ATPase than obtained with phosphorylated myosin. These results suggest that the COOH-terminal portion of an intact RLC is involved in interactions that regulate myosin's "on-off" switch, both in terms of completely inhibiting and completely activating the molecule.  相似文献   

14.
15.
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.  相似文献   

16.
17.
Previous studies indicated that single-headed smooth muscle myosin and S1 (a single head fragment) are not regulated through phosphorylation of the regulatory light chain (RLC). To investigate the importance of the double-headedness of myosin and of the S2 region for the phosphorylation-dependent regulation, we made three types of recombinant mutant smooth muscle HMMs with one intact head and an N-terminally truncated head. The truncated head of Delta MD lacked the motor domain, that of Delta(MD+ELC) lacked the motor and essential light chain binding domains, and single-headed HMM had one intact head alone. The basal ATPase activities of the three mutants decreased as the KCl concentration became less than 0.1 M. Such a decrease was not observed for S1, which had no S2 region, suggesting that S2 is necessary for this myosin behavior. This activity decrease also disappeared when RLCs of Delta MD and Delta(MD+ELC), but that of single-headed HMM, were phosphorylated. When their RLCs were unphosphorylated, the three mutants exhibited similar actin-activated ATPase levels. However, when they were phosphorylated, the actin-activated ATPase activities of Delta MD and Delta(MD+ELC) increased to the S1 level, while that of single-headed HMM remained unchanged. Even in the phosphorylated state, the actin-activated ATPase activities of the three mutants and S1 were much lower than that of wild-type HMM. We propose that S2 has an inhibitory function that is canceled by an interaction between two phosphorylated RLCs. We also propose that a cooperative interaction between two motor domains is required for a higher level of actin activation.  相似文献   

18.
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号