首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleic acid motors comprise a variety of structurally, mechanistically and functionally very different enzymes. These motor proteins have in common the ability to directionally move DNA or RNA, or to move along DNA or RNA using a chemical energy source such as ATP. Recently, it became possible to study the action of a single motor on single DNA or RNA molecules in real time; this has provided unprecedented insight into the behavior and mechanism of these motors. As a result, the past few years have witnessed an enormous increase in such single-molecule studies of a variety of different motor systems. Particular highlights have included the investigation of the sequence-dependent behavior and helical tracking of motors, and the attainment of the ultimate (i.e. single base pair) resolution, which enables the detection of individual single base motor steps.  相似文献   

2.
Molecular motors are enzymes that couple the energy from nucleoside triphosphate hydrolysis to movement along a filament lattice. The three cytoskeletal motor superfamilies include myosin, dynein, and kinesin. However, in the last decade it has become apparent that the nucleic acid-based enzymes (DNA and RNA polymerases as well as the DNA helicases) share a number of mechanistic features in common with the microtubule and actin motors despite the fact that their cellular functions are so different. This review addresses the mechanistic approaches that have been used to study molecular motors. We discuss the basic biochemical techniques used to characterize a protein preparation, including active site determination and steady-state kinetics. In addition, we present the transient-state kinetic approaches used to define a mechanochemical cycle. We attempt to integrate the information obtained from kinetic studies within the context of motility results to provide a better understanding of the contribution of each approach for dissecting unidirectional force generation.  相似文献   

3.
Single-molecule fluorescence methods remain a challenging yet information-rich set of techniques that allow one to probe the dynamics, stoichiometry and conformation of biomolecules one molecule at a time. Viruses are small (nanometers) in size, can achieve cellular infections with a small number of virions and their lifecycle is inherently heterogeneous with a large number of structural and functional intermediates. Single-molecule measurements that reveal the complete distribution of properties rather than the average can hence reveal new insights into virus infections and biology that are inaccessible otherwise. This article highlights some of the methods and recent applications of single-molecule fluorescence in the field of virology. Here, we have focused on new findings in virus–cell interaction, virus cell entry and transport, viral membrane fusion, genome release, replication, translation, assembly, genome packaging, egress and interaction with host immune proteins that underline the advantage of single-molecule approach to the question at hand. Finally, we discuss the challenges, outlook and potential areas for improvement and future use of single-molecule fluorescence that could further aid our understanding of viruses.  相似文献   

4.
Single-molecule fluorescence resonance energy transfer   总被引:18,自引:0,他引:18  
Fluorescent resonance energy transfer (FRET) is a powerful technique for studying conformational distribution and dynamics of biological molecules. Some conformational changes are difficult to synchronize or too rare to detect using ensemble FRET. FRET, detected at the single-molecule level, opens up new opportunities to probe the detailed kinetics of structural changes without the need for synchronization. Here, we discuss practical considerations for its implementation including experimental apparatus, fluorescent probe selection, surface immobilization, single-molecule FRET analysis schemes, and interpretation.  相似文献   

5.
Single-molecule detection (SMD) with fluorescence is a widely used microscopic technique for biomolecule structure and function characterization. The modern light microscope with high numerical aperture objective and sensitive CCD camera can image the brightly emitting organic and fluorescent protein tags with reasonable time resolution. Single-molecule imaging gives an unambiguous bottom-up biomolecule characterization that avoids the "missing information" problem characteristic of ensemble measurements. It has circumvented the diffraction limit by facilitating single-particle localization to ~1 nm. Probes developed specifically for SMD applications extend the advantages of single-molecule imaging to high probe density regions of cells and tissues. These applications perform under conditions resembling the native biomolecule environment and have been used to detect both probe position and orientation. Native, high density SMD may have added significance if molecular crowding impacts native biomolecule behavior as expected inside the cell.  相似文献   

6.
7.
Iizuka R  Ueno T  Morone N  Funatsu T 《PloS one》2011,6(7):e22253
Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.  相似文献   

8.
We demonstrate that it is possible to observe single fluorescent molecules using a standard fluorescence microscope with mercury lamp excitation and an inexpensive cooled charge-coupled device (CCD) camera. With this equipment, we have been able to observe single molecules of tetramethyl-rhodamine, rhodamine 6G, fluorescein isothiocyanate and green fluorescent protein. Immobilized molecules were observed both in air and in aqueous solution.  相似文献   

9.
It is currently thought that Alzheimer's disease develops due to aberrant generation of amyloid-beta peptides. However, the mechanisms underlying the aberrant generation of amyloid-beta peptides remain unknown. An emerging concept suggests that impaired axonal transport may play a pivotal role in the aberrant generation of amyloid-beta peptides. Here we review and discuss advances in understanding AD with the primary focus on the possible role of molecular motors and axonal transport in its pathogenesis.  相似文献   

10.
We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G?GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA?EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.  相似文献   

11.
In recent years, single-molecule methods have enabled many innovative studies in the life sciences, which generated unprecedented insights into the workings of many macromolecular machineries. Single-molecule studies of bioinorganic systems have been limited, however, even though bioinorganic chemistry represents one of the frontiers in the life sciences. With the hope to stimulate more interest in applying existing and developing new single-molecule methods to address compelling bioinorganic problems, this review discusses a few single-molecule fluorescence approaches that have been or can be employed to study the functions and dynamics of metalloproteins. We focus on their principles, features and generality, possible further bioinorganic applications, and experimental challenges. The fluorescence quenching via energy transfer approach has been used to study the O2-binding of hemocyanin, the redox states of azurin, and the folding dynamics of cytochrome c at the single-molecule level. Possible future applications of this approach to single-molecule studies of metalloenzyme catalysis and metalloprotein folding are discussed. The fluorescence quenching via electron transfer approach can probe the subtle conformational dynamics of proteins, and its possible application to probe metalloprotein structural dynamics is discussed. More examples are presented in using single-molecule fluorescence resonance energy transfer to probe metallochaperone protein interactions and metalloregulator-DNA interactions on a single-molecule basis.  相似文献   

12.
Efforts to use protein molecular motors as nanoactuators are making rapid progress. For instance, it is now possible to carry out directional transport of small cargo along microtracks or microchannels using kinesin-microtubule systems, which could be the basis of micro-conveyor belts or molecular shuttles. However, the applicability of protein-based devices is limited by their poor stability in artificial environments. In addition, assembly of complex, intelligent microdevices or systems will likely require bottom-up self-assembly, and we still do not have sufficient knowledge to rationally design self-assembling protein-based microdevices or systems. One approach to solving the problems associated with protein-based systems is to use DNA-based nanodevices, which are amenable to rational design. Indeed, ingenious design has enabled realization of DNA-based nanoactuators and self-assembled micropatterns of various shapes. One also could use cells, organelles, or tissues as preassembled motile units, and several motile devices have already been realized using this approach. In addition to being less prone to the assemaly problems, cell-based microdevices have the advantage that the motile units reproduce themselves, and genetically encoded functional modifications can be replicated effortlessly. These protein-based, DNA-based, and cell-based systems each have distinct advantages and disadvantages, so that hybrid devices combining the best characteristics of all three would seem the most likely to succeed.  相似文献   

13.
A review addresses the up-to-date evidence on the regulation of the organelle transport along microtubules in a very specific aspect of the interaction of the molecular motors of the opposite directions.  相似文献   

14.
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS-mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.  相似文献   

15.
The mechanochemistry of molecular motors   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

16.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

17.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

18.
19.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

20.
Machura L  Kostur M  Łuczka J 《Bio Systems》2008,94(3):253-257
Properties of transport of molecular motors are investigated. A simplified model based on the concept of Brownian ratchets is applied. We analyze a stochastic equation of motion by means of numerical methods. The transport is systematically studied with respect to its energetic efficiency and quality expressed by an effective diffusion coefficient. We demonstrate the role of friction and non-equilibrium driving on the transport quantifiers and identify regions of a parameter space where motors are optimally transported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号