首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Samples of the fraction of net rainfall passing through the forest floor collected at monthly intervals in four pristine forests in Colombian Amazonia, during the period between 1995–1997 were analysed for solute concentrations to estimate the element fluxes from the forest floor into the mineral soil and root nutrient uptake from these forest floors. Results were compared with inputs by throughfall, stemflow, litterfall and fine root decay. Element concentrations were tested for their relationship with litterflow amounts, rainfall intensity and length of the antecedent dry period and differences in element fluxes between ecosystems were assessed. Concentrations of elements in litterflow followed a similar pattern as those in throughfall, which indicates that element outputs from the forest floor are strongly related to those inputs in throughfall. In the forests studied, the average concentrations of elements as K, Mg, orthoP and the pH of the litterflow decreased relative to that in throughfall in most events, while the concentration of elements such as dissolved organic carbon, H, SO4 and Si increased in litterflow from these forests. Element concentrations in litterflow showed a poor correlation with variables such as litterflow amounts, rainfall intensity and antecedent dry period, except for K which showed a significant correlation (p>0.95) with analysed variables in all forests. Outputs were significantly different between forests (p>0.95); these fluxes, which particularly concerned cations, being the largest in the flood plain, while for anions outputs increased from the flood plain to the sedimentary plain. After adding the nutrient contributed by litter decomposition and fine root decay, the net outputs of main elements from the forest floors were still smaller than inputs by net precipitation (throughfall+stemflow) indicating that the litter layers clearly acted as a sink for most nutrients. Accordingly, the element balances confirm that the forest floors acted as a sink for nutrients coming in by throughfall, stemflow, litterfall and fine root decomposition. P, Mg and N appeared to be the most limiting nutrients and the forests studied efficiently recycled these nutrients.  相似文献   

2.
长白山红松云冷杉林林内降水的养分输入   总被引:2,自引:1,他引:2  
1 引言 在林地里,树木的叶子、枝条、树皮、果实,有时甚至整株树木都周期性地归还土壤,这种凋落物养分归还是森林生态系统的一个重要特点。但林木吸收的大部分养分,除由凋落物归还土壤外,还能由树冠淋洗归还土壤,在我国东北地区森林生态系统研究工作中,红  相似文献   

3.
In order to analyze the dyanmics of heavy metals in a forest ecosystem, throughfall and stemflow were collected for individual rain showers in an evergreen broad-leaved forest dominated byCastanopsis cuspidata. The relation between throughfall (or stemflow) (Px) and gross rainfall (P) was approximated by a linear regression equationPx=a(P-b). The values of coefficient “a” were 0.32–2.02 for throughfall at each sampling point and the mean values for 1976 and 1977–1978 were 0.682 and 0.767, respectively. The stemflow volume differed widely among individual trees, depending mainly on the tree form of each species. In particular, the tree form ofPasania edulis was found to be especially suited to collecting stemflow. OneP. edulis tree collected 64% of the rainwater that fell onto its crown as stemflow. The ratio of stemflow to gross rainfall decreased in summer resulting from an increase in leaf biomass and an increase in air temperature. In fact, the values of coefficient “a” for mean stemflow per unit area were 0.180 for summer and 0.229 for other seasons in 1976, and 0.145 for summer and 0.155 for other seasons in 1977–1978 for different sampled trees.  相似文献   

4.
Summary Concentrations of Cu, Fe, Mn, and Zn were measured in bulk atmospheric precipitation, throughfall, stemflow, and soil solutions at 10−, 15−, 25−, and 30-cm depths, in aEucalyptus globulus forest in the Berkeley hills, California, during the 1974–75 wet season after each main storm event. Litter and plant samples were analyzed. There was some similarity in the behavior of Cu, Fe, and Zn, but Mn behaved differently. Mn and Zn are largely deposited on the forest canopy by impaction during dry-deposition episodes, whereas most of the Cu and Fe input occurs in rain. For the hydrologic components measured, concentrations of Cu and Fe increase in the order: precipitation<throughfall<stemflow <soil solutions. For Zn the order is: precipitation<stemflow<throughfall<soil solutions. Concentrations of Cu, Zn, and Fe in the soil solution fluctuate with downward movement of wetting fronts and are negatively correlated with pH. Concentrations of Fe in soil solution are about 10 times greater than those of throughfall and stemflow; the corresponding relative differences for Cu and Zn were much less. Plant uptake of Mn exceeds that of Cu, Zn, and Fe. The increases in Mn concentrations from precipitation to throughfall and stemflow are much greater than those for Cu, Zn, and Fe because precipitation has very low Mn concentrations. The concentration series for Mn is: precipitation<soil solutions<throughfall<stemflow. Concentrations of Mn in the soil solution are negatively correlated with pH. During the dry summer Mn accumulates in the soil, but is quickly flushed by early rains of the wet season.  相似文献   

5.
Rainfall partitioning into throughfall and stemflow was studied in a diverse and in a mono specific stand of secondary vegetation in Eastern Amazonia. The nutrient concentrations in the water were analysed in order to quantify the related hydrochemical fluxes. Secondary vegetation forms the fallow in the local shifting cultivation system and is usually dominated by shrubs and trees. Phenakospermum guyannense (Strelitziaceae), a banana-like herb, is one of the predominant non-woody species. The study was conducted during an 18-month period in a 2.5-year-old relatively species-rich stand and a 10-year-old stand dominated by P. guyannense. In a year with 1956 mm of rainfall 65% (1281 mm) of this quantity reached the soil as throughfall in the diverse stand and 38% (743 mm) in the mono specific stand. Stemflow was estimated to be 23% and 41% respectively. P. guyannense and Banara guianensis (Flacourtiaceae), a tree species, were causing these high funnelling effects. In the young diverse stand B. guianensis had a stemflow of more than 200 l year−1 and P. guyannense had a median flux of 77 l year−1 per pseudostem. In the older stand the taller plants of P.␣guyannense collected 644 l year−1 per pseudostem on the median. The reason for these high values could be the banana-like growth form of P. guyannense and the crown morphology of B. guianensis, which has inclined branches. The low proportion of throughfall and the high stemflow values differ from all previous studies in Amazonian primary forests. The proximity to the Atlantic Ocean strongly influenced the nutrient fluxes via rainfall at our study site. This becomes obvious from the high Na and Cl fluxes with rainfall (19.7 kg Na ha−1 year−1, 37.2 kg Cl ha−1 year−1) which were approximately equal to the Na and Cl fluxes with the sum of throughfall and stemflow for both stands. K fluxes in throughfall and stemflow in both stands were higher than in rainfall by a factor of 8. The high K enrichment during the crown passage is assumed to be caused by a␣high K concentration in the leaf tissue resulting in enhanced leaching from the leaves. In months with low␣rainfall the concentrations of Ca, Mg, S and Cl in throughfall of the diverse stand were significantly higher than in months with high rainfall. This was mainly due to vegetation burns in the dry period, which resulted in ash deposition on the canopy and subsequent wash-off and solution of ash particles. Received: 11 May 1997 / Accepted: 2 November 1997  相似文献   

6.
Nutrient loss from forest ecosystems by burning and leaching can be estimated by comparing nutrient stores before and after the disturbance, and by measuring the nutrient fluxes during disturbance. We applied both methods to a clear cutting experiment near Belem, Eastern Amazon, in a correct time series of 15 months duration. Nutrient flux measurements include wood export, loss to the atmosphere by burning, and leaching. The latter was based on water flux simulation with a soil water model, and on element analysis of soil water extracts (ceramic cup lysimeter). Two plots with 33 and 92tha–1 of residual biomass (left after export of wood >7cm diameter) were compared with a forest control plot. Store and flux balances agreed well in case of Na, K, Mg, and S, and partially also for Ca and total P. Deviations seem to be caused by erratic but statistically not significant variations of the soil stores (mainly C and total N). Spacial variability of soil parameters demand very high sample replication, especially after disturbance. Flux measurements are better but more costly.  相似文献   

7.
林冠分配降雨过程的模拟实验分析   总被引:5,自引:3,他引:5  
实验发现,降雨通过林冠的穿透过程线、树干径流过程线与电感电容电阻串联电路暂态过程线极为相似。由此启发,用此电路暂态方程拟合穿透降雨与树干径流过程并求出了解析解。进而,根据余项法求出截留强度表达式。此举拓宽了森林水文学理论研究思路。  相似文献   

8.
The lichen Hypogymnia physodes was sampled from spruce trunks and we used to assess natural elements in the throughfall from pairs of neighbouring beech (Fagus sylvatica) and spruce (Picea abies) canopies in an unmanaged forest reserve. The beech bark (pH = 4.36 ± 0.13) was less acidic than spruce bark (3.71 ± 0.06). After a 1 yr transplantation onto trunks, lichens on beech had significantly higher concentrations of Ca, K, Mg and P than on spruce, and lower Mn, Zn and C, but had similar Al, B, Fe, N, Na, S and Si concentrations. Base cations (Ca, Mg, K) in lichens highly significantly increased with bark pH, with no overlap between tree species neither for base cations, nor for pH. The results are consistent with the view that trees modify the elemental composition of lichens in their dripzone, and that trees at least to some extent can modify the elemental chemistry of their local surroundings and thus influence ecosystem processes. We discuss lichen transplantation as a method to estimate long-term effects of tree species on local chemical environments.  相似文献   

9.
Kauri dieback, caused by Phytophthora agathidicida, is an emergent threat to the ecologically unique and carbon-rich kauri (Agathis australis) forests in New Zealand. Our main aim was to assess the effect of kauri dieback on canopy and forest floor dissolved and particulate carbon (C) and nitrogen (N) fluxes. Throughfall and stemflow collectors and free-draining lysimeters were deployed underneath the canopy of ten kauri trees differing in their soil P. agathidicida DNA concentration and visual health status and sampled weekly to monthly over 1 y. Throughfall and forest floor dissolved C and N fluxes decreased significantly with increasing soil P. agathidicida DNA concentration which may be related to changes in leaf chemistry, leachable kauri leaf surface area and uptake of N by the understory vegetation. The observed alteration in dissolved and particulate C and N fluxes under P. agathidicida infected kauri trees could lead to long-term changes in biogeochemical processes (e.g. mineralization, nutrient availability) in these ecologically unique kauri forests.  相似文献   

10.
Large mammals are vulnerable to extinction, and respond directly to ecological gradients within the forest and to the intensity of forest product use by humans. In this study, we evaluated the effects of differences in forest structure and human occupation history on the composition of medium and large‐sized mammal assemblages of the terra‐firme forests of the Anavilhanas National Park, one of the most oligotrophic Amazonian ecosystems. Mammal surveys were conducted along 11 linear transects of 4 km, six of which were located in areas once inhabited by people and managed until the year that the park was created (over 30 years ago), and five in areas that were not inhabited at that time. We detected 469 individuals of 26 species during diurnal and nocturnal sampling, and 11 additional species outside transects. Human occupation history was strongly related to forest structure components. Fruit biomass, canopy cover and tree size were strongly associated with uninhabited areas, and influenced the structure of mammal assemblages. A direct relationship between diet category and species size was observed. Large frugivore‐herbivores and carnivores were more closely associated with areas with more fruit, larger trees and greater canopy cover. In contrast, small arboreal frugivore‐omnivores associated more closely with open canopy and smaller trees. Our study indicated that the effects of human occupation history on forest structure are still evident three decades after the removal of local people from the park. This long‐term effect can be explained by the low resilience of the Anavilhanas environments, demonstrating the fragility of mammal assemblages in face of anthropogenic variation in forest structure in the oligotrophic ecosystems of the Negro River basin.  相似文献   

11.
亚热带常绿阔叶林和杉木人工林茎流与穿透雨的养分特征   总被引:8,自引:1,他引:8  
亚热带常绿阔叶林和杉木人工林树干茎流和穿透雨养分含量均表现季节动态变化。养分含量中,K^ 、Ca^2 、NO3%-浓度高,Na^ 、Mg^2 居中,HPO4^2-含量低,相对于林外雨,养分均出现富集化,但树干茎流养分富集化高于穿透雨。树干茎流出现强烈的酸化,而穿透雨酸化现象不明显。树种之间的茎流养分特征表现不一样,樟树和枫香总的养分浓度较高,其次为刨花楠,最后为青冈和红栲。  相似文献   

12.
对鼎湖山季风常绿阔叶林大气降雨、穿透雨和树干茎流中的5种养分元素K、Ca、Mg、N、P进行了测定,结合水量分配规律,研究了森林降雨过程中养分在水相中的含量变化特征和输入规律。结果表明:(1)所有离子浓度均为大气降水<穿透雨<树干流,且增幅较大,而平均浓度以K+和总氮(TN)含量最高;总磷(TP)、磷酸盐(HPO42-)、总有机磷(TOP)含量均最低。(2) 大气降雨中的离子平均浓度中以总有机氮(TON)的变异系数最大,为1.282;最小的是NO3-(0.502);穿透雨中变异系数最大的是TOP(2.357);最小的是TN(0.621)。树干流中各养分元素浓度与树种的相关性不显著(P>0.05)。(3) 季风常绿阔叶林树干流和穿透雨各养分对森林土壤的年输入量为TN>K+>Ca2+>Mg2+>TP,树干流和穿透雨对森林土壤层Ca2+的输入大于凋落物分解输入。因此,大气降雨是养分从林冠层转移到土壤层的重要因素。  相似文献   

13.
Summary Stemflow inputs of magnesium and potassium were measured from 57 canopy trees representing eight species under heavy rainfall conditions in two tropical forest sites in northeast Queensland, Australia. In the premontane tropical moist forest site on the Atherton Tableland, the stemflow input per unit trunk basal area of 51 canopy trees was found to be 0.46 g m-2 of Mg2+ and 4.22 g m-2 of K+ for an average wet season rainday of 99 mm. In the wetter montane tropical rainforest site on Mount Bellenden Ker, the stemflow input per unit trunk basal area of six canopy trees was 5.55 g m-2 of Mg2+ and 9.12 g m-2 of K+ for a wet season rainday of 38 mm. These stemflow inputs from single raindays are greater than the mean annual rainfall input and are almost of the same order of magnitude as the mean annual throughfall input of these cations to areas equal to the trunk basal area from which the stemflow was collected. Stemflow cation fluxes of this magnitude are mainly attributable to the funnelling of large quantities of rainwater down the trunks of these canopy trees by their thoroughly wetted, upwardly inclined branches.  相似文献   

14.
In forests and grasslands, canopy-derived carbon fluxes have been shown to be an important part of the carbon cycle, yet very few data are available for permanent agricultural crops. Concentration of total (TOC), dissolved (DOC) and particulate organic carbon (POC) was measured during an entire hydrological year in direct rainfall throughfall and stemflow in a mature olive orchard. Throughfall accounted for 68% of incoming rainfall, but TOC concentration was on average 14 times higher than in rainfall (7.63 vs. 106.12 mg/L). Stemflow on the other hand represented only a small fraction of gross precipitation, on average less than 1%, while its TOC concentration was on average 10-fold higher than in rainfall (74.13 mg/L). Dynamics of OC enrichment were mainly driven by precipitation patterns, as well as plant phenology, whereas a dramatic increase happened during flowering. Stemflow and throughfall were proven to be important sources of organic carbon supplying 13.5 g C/m2/year beneath the canopy of each tree, while 2.41 g C/m2/year reached the soil through gross precipitation. This large fraction of carbon is a mean of recirculating important carbon compounds that may help mobilize soil nutrients and maintain water holding capacity in the circumscribed area below olive canopies.  相似文献   

15.
The future flora of Amazonia will include significant areas of secondary forest as degraded pastures are abandoned and secondary succession proceeds. The rate at which secondary forests regain carbon (C) stocks and re-establish biogeochemical cycles that resemble those of primary forests will influence the biogeochemistry of the region. Most studies have focused on the effects of deforestation on biogeochemical cycles. In this study, we present data on the recuperation of carbon stocks and carbon fluxes within a secondary forest of the eastern Amazon, and we compare these measurements to those for primary forest, degraded pasture, and productive pasture. Along a transect from a 23-y-old degraded pasture, through a 7-y-old secondary forest, through a 16-year-old secondary forest, and to a primary forest, the δ13C values of soil organic matter (SOM) in the top 10 cm of soil were – 21.0, – 26.5, – 27.4, and – 27.9‰, respectively, indicating that the isotopic signature of SOM from C3 forest plants was rapidly re-established. The degraded pasture also had significant inputs of C from C3 plants. Radiocarbon data indicated that most of the C in the top 10 cm of soil had been fixed by plants during the last 30 years. Differences in soil C inventory among land use types were small compared to uncertainties in their measurement. Root inputs were nearly identical in primary and secondary forests, and litterfall in the secondary forest was 88% of the litterfall rate of the primary forest. In contrast, the secondary forest had only 17% of the above ground biomass. Because of rapid cycling rates of soil C and rapid recovery of C fluxes to and from the soil, the below ground C cycle in this secondary forest was nearly identical with those of the unaltered primary forest.  相似文献   

16.
Radon‐222 (Rn‐222) is used as a transport tracer of forest canopy–atmosphere CO2 exchange in an old‐growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month‐long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO2 (CO2 NEE) during calm, night‐time hours when eddy covariance‐based NEE measurements are less certain because of low atmospheric turbulence. Rn‐derived night‐time CO2 NEE (9.00±0.99 μmol m?2 s?1 in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance‐derived CO2 NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO2 results suggest that uncorrected eddy covariance values underestimate night‐time CO2 loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO2 uptake in Amazonian terra firme forest may be overestimated.  相似文献   

17.
孙忠林  王传宽 《生态学报》2014,34(15):4133-4141
可溶性碳(Dissolved carbon,DC)和颗粒碳(particulate carbon,PC)通量作为森林生态系统碳收支的重要组分,在森林固碳功能的评价和模型预测中具有重要意义,但常因认识不足、测定困难等而在森林碳汇研究中被忽略。综述了森林生态系统DC和PC的组成、作用、相关生态过程及其影响因子,并展望了该领域应该优先考虑的研究问题。森林生态系统DC和PC主要包括可溶性有机碳、可溶性无机碳和颗粒有机碳,主要来源于生态系统的净初级生产量。DC和PC是森林土壤的活性碳库,主要以大气沉降、穿透雨和凋落物的形式输入森林土壤系统,并通过土壤呼吸、侧向运输及渗透流失的方式输出生态系统。从局域尺度看,DC和PC通量受根系分泌、细根分解、微生物周转等生物过程的影响较大;从区域尺度看,它们受土壤和植被特性、生态过程耦联关系、气候因子以及全球变化的综合影响。该领域应该优先考虑:(1)探索不同时空尺度下森林生态系统DC和PC通量的控制因子及其耦联关系,揭示其中的驱动机理;(2)探索DC和PC与其它森林生态系统碳组分的相互关系及转化,阐明DC和PC通量与其它养分之间潜在的生态化学计量关系;(3)探索全球变化,特别是人类活动(如森林经营)和极端干扰事件(如林火、旱涝、冰冻、冻融交替等)对森林生态系统DC和PC通量的影响。  相似文献   

18.
This study evaluates biotic responses, using ants as bio-indicators, to relatively recent anthropogenic disturbances to mature forest in central Amazonia. The structure of the ground-foraging ant community was compared in four habitats that represented a gradient of disturbance associated with differences in land use. Ants were collected in undisturbed, mature forest, in an abandoned pasture, in a young regrowth forest (situated in a former pasture area), and in an old regrowth forest (established where mature forest was just cleared and abandoned). More ant species were found in mature and old regrowth forest than in the abandoned pasture. By contrast, ant abundance tended to decrease with forest maturity. Both pasture and young regrowth forest exhibited a distinct ant species composition compared to mature forest, whereas species composition in the old regrowth forest showed greater similarity to that of mature forest. In spite of differences in fallow time between former pasture areas and non-pasture areas, there is evidence that different land-management practices do result in different rates of recovery of the ant forest fauna after land abandonment. In any case, recuperation of the ground-foraging ant fauna appears to be faster than regeneration of the woody-plant community. In this sense, regrowth forests may be valuable for the conservation of ground-foraging ants and perhaps for other components of mature-forest leaf-litter fauna within the context of a fragmented landscape.  相似文献   

19.
The influence of plant species on soil nitrogen (N) dynamics was investigated in lowland Amazonia, Brazil under plantations of tree species with varied phenologies, resource requirements, and chemical characteristics in fine litter. Seasonal N dynamics were studied in replicated stands of Pinus caribaea var. hondurensis Barrett & Golfari, Euxylophora paraensis Hub., Carapa guianensis Aubl., a Leguminosae combination (Dalbergia nigra Fr. All., Dinizia excelsa Ducke, Parkia multijuga Benth.), and native forest in the Curuá-Una Forest Reserve, Pará, Brazil. Textural, mineralogical, and chemical soil properties at 1 m depth under the plantations and the forest indicated that initial soil properties were similar. Net annual N mineralization ranged from 195 kg ha-1 (P. caribaea) to 328 kg ha-1 (forest), and was related to fine root N contents in the surface root mat (R2 = 0.96, p = 0.01). Net annual N mineralization was also inversely related to within-stand nitrogen-use efficiency (R2 = 0.81, p = 0.04). These results suggest that tree species or groups of species with varied N-use efficiencies altered soil N transformation rates in a predictable manner.  相似文献   

20.
The nutrient cycling and foliar status for the elements Ca, Mg, K, N, P, S, Fe, Mn, Zn and Cu were investigated in an urban forest of Aleppo pine (Pinus halepensis) in 2004 in Athens, Greece in order to draw conclusions on the productivity status and health of the ecosystem. The fluxes of bulk and throughfall deposition were characterized by the high amounts of Ca, organic N and sulfate S. The magnitude of the sulfate S fluxes indicated a polluted atmosphere. The nutrient enrichment in throughfall was appreciable for ammonium N, P and Mn. The mineral soil formed the largest pool for all the elements followed by the forest floor, trunk wood and trunk bark. The understory vegetation consisting of annual plants proved important for storing N, P and K. Compared to current year needles of Aleppo pine in remote forests of Spain, the needles of the Aleppo pine trees in Athens had significantly higher concentrations of Ca, N, P and Cu and significantly lower concentrations of Mg and Zn. The soil had a high concentration of calcium carbonate and accordingly high pH values. When all inputs to the forest floor were taken into account, the mean residence time of nutrients in the forest floor followed the order Fe > Mn > Cu > Ca > Mg > P > Zn > N > K > S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号