首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of reduced horse heart cytochromec by membranes isolated from the cyanobacteriumAnacystis nidulans after growth at different temperatures was studied between 4°C and 41°C in the light and the dark using both spectrophotometric and polarographic techniques. Arrhenius plots of the temperature dependence of cytochromec photooxidation showed a single discontinuity at 25°C, 15°C, and 12°C in membranes derived from cells grown at 40°C, 30°C, and 25°C, respectively. By contrast. Arrhenius plots of the temperature dependence of dark respiratory cytochromec oxidation always displayed two distinct breaks at 25 and 18°C, 15 and 8.5°C, and 12 and 5.5°C in membranes isolated from cells grown at 40°C, 30°C, and 25°C, respectively. The results are discussed in terms of the thermotropic lipid-phase transitions known to take place in the membranes ofA. nidulans. Special reference will be made to possibly distinct localizations of the membrane-bound cytochromec oxidase complexes in respiration and photosynthesis.  相似文献   

2.
The enzyme malate dehydrogenase (EC 1.1.1.37) from an extreme thermophileB. Caldolyticus was purified to about 91% homogeneity. The molar mass of the enzyme was determined as 73 000 daltons and it is composed of two subunits, each with a molar mass of 37 000. Initial velocity studies with oxaloacetic acid and NADH as substrates at pH 8.1, over a range of temperatures, indicate that the enzyme operates via a sequential type mechanism. Van't Hoff plots of the kinetic parameters displayed sharp changes in slope at characteristic temperatures, whereas the Arrhenius plot exhibited no such breaks over the temperature interval investigated. The enzyme was found to be stable at 41°C and lower temperatures. At 51°C and 59°C an almost immediate 20% reduction in activity was obtained, but no further inactivation occurred during the 60 min of incubation. At 59°C the enzyme lost 50% of its initial activity in about 38 s. High concentration of NADH was observed to greatly stabilize the enzyme at that temperature.It is suggested that the slope changes in the Van't Hoff plots and the stability profies at 51°C and 59°C are representative of a temperature induced conformational change in the enzyme.Proceedings of the Fourth College Park Colloquium on Chemical Evolution:Limits of Life, University of Maryland, College Park, 18–20 October 1978.  相似文献   

3.
The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.  相似文献   

4.
R. Marx  K. Brinkmann 《Planta》1979,144(4):359-365
1. Respiration rates of broad-bean (Vicia faba) mitochondria were studied as a function of temperature. Arrhenius plots of all membrane-bound enzymes, as obtained with saturating substrate concentrations, revealed a break in the lower temperature range. That break was considered to indicate a phase transition of membrane phospholipids, characteristic for chilling-sensitive plants. A second discontinuity at 30°C occurred only with activities linked to energy conservation. — 2. The activation energies for the oxidation of NAD+-linked substrates differ between states 3 and 4. State 3 respiration of NAD+-linked substrates is the result a superimposition of two branches of electron transport, which can be separated by different sensibilities to rotenone. A characteristic temperature dependency of the respiratory control, as well as a shift of the low temperature break in the Arrhenius plot toward a higher temperature after state 4 to state 3 transition, are calculated to be caused by the superimposition of the two branches. — 3. The temperature dependency of the oxidation of extra-mitochondrial NADH and of succinate differs remarkably from that of the oxidation of matrix-NADH. It has been concluded that the rotenone-resistant oxidation of matrix-NADH and the oxidation of external NADH are mediated via different pathways with individual regulation sites.Abbreviations BSA bovine serum albumin - CCCP carbonylcyanide-m-chlorophenylhydrazone - TPP thiaminepyrophosphate  相似文献   

5.
Summary The production of amylolytic enzymes by a thermophilic cellulolytic fungus,Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45° C. Among various nitrogenous compounds used, NaNO3 and KNO3 were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50° C–60° C) and displayed activity optima at 60° C and pH 5.6.  相似文献   

6.
Laybourn-Parry  Johanna  Tinson  Stuart 《Oecologia》1985,65(4):566-572
Summary The rate of oxygen consumption in all developmental stages of two benthic cyclopoid copepod species, Acanthocyclops viridis (Jurine) and Eucyclops agilis (Koch, Sars) was investigated at temperatures between 5° C–20° C, which are reflective of the environmental temperature range of the benthic zone in Esthwaite Water, Cumbria, from which the organisms were derived. The larger species, A. viridis was found to have a temperature insensitive metabolism, whereas E. agilis showed a marked temperature response in respiratory function. Gravid and non-gravid females had similar rates of respiration except at 15° C–20° C in E. agilis. Males exhibited much lower respiration rates than females, but higher weight specific respiration rates; these differences were largely attributable to size differentials between the sexes. Estimates of swimming activity were made and these were related to the patterns of respiratory function observed.  相似文献   

7.
Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.Abbreviation Bchl baceteriochlorophyll  相似文献   

8.
Summary Stubble quail and King quail are both native to Australia although Stubble quail extend into more arid environments than do King quail. In this study, the responses of body temperature (T b), heart rate (f h), respiration rate (f r) and rates of gular flutter (f g) were measured in response to ambient temperatures (T a) ranging from 20 °C to 50 °C. Both species exhibited hyperthermia atT a in excess of 38–39 °C although both species maintainedT b lower thanT a atT a above 42 °C. Respiration rate remained relatively constant until the onset of panting, just prior to the commencement of gular flutter. The onset of panting and gular flutter in both species was relatively sudden and occurred at a meanT a of 38.1 °C for Stubble quail (meanT b of 42.5 °C) and a significantly higherT a of 40.9 °C but similar meanT b of 42.1 °C for King quail. Gular flutter appeared to occur synchronously with respiration and showed some tendency to increase withT b. The percentage of time spent in gular flutter showed a direct increase withT b. Heart rate tended to decrease with increasingT a in King quail while remaining relatively constant in Stubble quail. However, the relationship was not consistent and a great deal of variability existed between individuals. The two species are similar in their responses to heat stress and in general these responses do not reflect their different natural habitats.Symbols f h heart rate - f r respiratory rate - f g rate of gular fluttering  相似文献   

9.
The cladoceran Daphnia middendorffiana is an arctic species able to produce winter eggs which develop parthenogenetically. The cytological study of the maturation of summer and winter eggs of an italian population of this species has shown that both types of eggs undergo only one maturation division of equational type with the expulsion of only one diploid polar body, the same maturation process as had been found in the pseudosexual eggs of a race of Daphnia pulex (Schrader, 1925).—The chromosomes behaviour during the maturation of summer and winter eggs of D. middendorffiana has been compared with that of a population of D. pulex which shows a normal heterogonic cycle.This investigation was supported by the Consiglio Nazionale delle Ricerche (C.N.R.) of Italy.  相似文献   

10.
Inactivation of glucose 6-phosphate dehydrogenase (G6PDH) complexed with its substrate, glucose 6-phosphate (GP), or cofactor, NADP+, has been studied within the range 20–40°C in three media: (a) 0.04 M NaOH–glycine buffer (pH 9.1); (b) Aerosol OT (AOT) reversed micelles in octane; and (c) Triton X-100 micelles in octane supplemented with 10% hexanol. The enzyme inactivation was characterized quantitatively by first order rate constants, k in(s–1). In the case of G6PDH–NADP+complexes, the values of k inwere independent of the initial concentrations of G6PDH, either in aqueous medium or AOT micelles. The values of k infor the complex G6PDH–GP were inversely related to the initial concentration of the enzyme, in both aqueous and micellar media. When inactivation of both complexes were studied in AOT micelles, minimum values of k incorresponded to the degree of hydration W 0= 16.7; at W 0> 16.7 and W 0< 16.7, k inincreased. Within the range 20–40°C, the values of k inmeasured for both complexes in aqueous medium were significantly lower than those measured in AOT micelles. Temperature dependences of k inwere characterized by inflections in Arrhenius plots, which corresponded, depending on the medium, to certain temperatures from 33.6°C to 40°C. In all media studied, NADP+complexes of the enzyme exhibited higher stability than their GP counterparts. The parameters of G6PDH and G6PDH–NADP+melting, measured by differential scanning microcalorimetry (maximum temperature and half-width of the transition, enthalpy of denaturation, and van't Hoff enthalpy), provided unequivocal evidence of the higher stability of the complex as compared to that of the enzyme. In addition, this approach demonstrated that G6PDH undergoes destabilization in AOT micelles.  相似文献   

11.
C. K. M. Rathnam 《Planta》1978,141(3):289-295
The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35–37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17–20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants.Abbreviations CAM crassulaccan acid metabolism - Chl chlorophyll - Ea activation energy - PEP phosphoenolypyruvate Journal Series Paper, New Jersey Agricultural Experiment Station  相似文献   

12.
The properties of the ATPase in the facultative thermophile, Bacillus coagulans, grown at thermophilic or mesophilic temperatures were similar. Arrhenius plots did not show discontinuities indicative of thermoadaptation. Magnesium stimulation of the enzyme was dependant on the assay temperature but independant of the growth temperature. The ATPase in cells grown at 35°C or 55°C was equally thermostable at 65°C. In contrast, the ATPase from the mesophile, Bacillus megaterium (T max=42°C) was completely inactivated at 55°C in 5 min.  相似文献   

13.
Summary Chitinase and N-acetyl--D-glucosaminidase have been demonstrated in Meganyctiphanes norvegica and in Euphausia superba and partly characterized. The enzymes from both species have broad pH-optima (maxima around pH 5.0) and temperature optima between 40 and 50°C. The enzymes are relatively stable; even at about 45°C half of the enzyme activity is retained after 30 min incubation. The presence of fluoride does not affeet enzymatic activity. Chitinase activity appears in three different molecular masses, N-acetyl--D-glucosaminidases in two different forms. pH and temperature optima, thermal stability and kinetic properties of the two enzymes are strikingly similar in the polar E. superba versus the boreal euphausiid M. norvegica. Enzyme activity in the lower temperature range is still high, whereas activation energies are low in both euphausiids. This suggests a functional adaptation to a low temperature range in seawater.  相似文献   

14.
Carnation petals, at a stage in which they are already producing ethylene, show a sigmoidal dependency of ethylene production on temperature within the range of 0 to 30°C. An Arrhenius plot of these data show a break atca. 22°C in the straight lines connecting the points. The activity of the ethylene-forming enzyme (EFE), measured bothin vitro, using isolated membranes, andin vivo, using petals pretreated with 1-aminocyclopropane-1-carboxylic acid (ACC), shows an exponential dependency on temperature within the same range. Arrhenius plots of EFE activity fail to show any discontinuity.In contrast, ACC synthase activity measuredin vitro shows the same sigmoidal dependency on temperature as that of the intact petals. We suggest, therefore, that ACC synthase activity is the rate-limiting step mediating the influence of temperature on ethylene biosynthesis by carnation petals over the range studied.  相似文献   

15.
The homogeneous serine hydroxymethyltransferase from monkey liver was optimally activate at 60°C and the Arrhenius plot for the enzyme was nonlinear with a break at 15°C. The monkey liver enzyme showed high thermal stability of 62°C, as monitored by circular dichroism at 222 nm, absorbance at 280 nm and enzyme activity. The enzyme exhibited a sharp co-operative thermal transition in the range of 50°–70°(T m= 65°C), as monitored by circular dichroism. L-Serine protected the enzyme against both thermal inactivation and thermal disruption of the secondary structure. The homotropic interactions of tetrahydrofolate with the enzyme was abolished at high temperatures (at 70°C, the Hill coefficient value was 1.0). A plot ofh values vs. assay temperature of tetrahydrofolate saturation experiments, showed the presence of an intermediate conformer with anh value of 1.7 in the temperature range of 45°–60°C. Inclusion of a heat denaturation step in the scheme employed for the purification of serine hydroxymethyltransferase resulted in the loss of cooperative interactions with tetrahydrofolate. The temperature effects on the serine hydroxylmethyltransferase, reported for the first time, lead to a better understanding of the heat induced alterations in conformation and activity for this oligomeric protein.  相似文献   

16.
Summary The optimum temperatures for growth and respiration of an obligately psychrophilic Pseudomonas spec. were 14°C and 23°C, respectively. The maximum temperature for growth was between 19 and 20°C. When cells were grown in a chemostat with lactate as the growth-limiting substrate at a specific growth rate of 0.05 hr-1 over a temperature range of 5–19°C, it was found that RNA concentration was lowest at 14°C. At lower temperatures the cells compensated the decrease of reaction rates by increasing the concentration of RNA and of respiratory enzymes. A temperature raise above 14°C also increased cellular RNA, which probably counteracted an impairment of protein synthesis. Above 18°C the RNA increase ceased, resulting in a rapid decrease of protein synthesis, until between 19 and 20°C growth ceased entirely. Cells grown at 14°C showed a linear increase of RNA content and values with growth rate, when this was varied from 0.025 to the maximum value of 0.2 hr-1.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday.  相似文献   

17.
The thermostability of four enzymes of the tricarboxylic acid cycle has been studied in the facultative thermophile,Bacillus coagulans. Although isocitrate dehydrogenase appeared to be more temperature-sensitive in whole-cell extracts of cultures grown at 30°C compared with that in cultures grown at 55°C, this difference could be largely eliminated by the removal of cell-wall material. The specific activity of each of the enzymes examined was approximately threefold higher in cultures grown at 55°C than in those grown at 30°C. The maximum temperature, Arrhenius plot and effect of stabilizing agents for each enzyme were examined and found to be independent of growth temperature. Sodium chloride (10% w/v) was an effective protective agent for fumarase, aconitase and malate dehydrogenase. Protection from thermal denaturation of isocitrate dehydrogenase, aconitase and fumarase but not malate dehydrogenase was also given when the enzymes were heated in the presence of their substrates. These results are discussed in light of the generalized theories of facultative thermophily which have been proposed.  相似文献   

18.
Summary Chainia sp. (NCL 82.5.1) produces an extracellular, cellulase-free xylanase. The ready accessibility of the enzyme to cellulose pulp due to its small size and the absence of cellulase are advantageous features. The enzyme is stable at 40°C for 1h and in a pH range of 5–9 at 4°C. Improved stability of the enzyme at higher temperature and pH are desirable. Effect of a variety of compounds was studied to enhance stability. Glycerol, sorbitol, mannitol (10%) or glycine (1M) had marginal effect on thermostability. Addition of Ca+2 or PEG (10mM) increased the half-life of the enzyme at 60°C. Cysteine (10mM) or Tween-80 (1%) showed 70% protection against thermal inactivation. Xylan (3%) offered complete protection against inactivation of the emzyme at 60°C and at pH 9.NCL Communication No. 5907  相似文献   

19.
The temperature sensitivity of the ATPase enzyme systems in a muscle microsomal preparation from the crayfish, Astacus pallipes, was studied. Preincubation of the enzyme preparation in the range 33–36°C produced a marked inactivation of the ATPases; the Mg++-dependent ATPase was very much more sensitive to this treatment than the Na+-K+-Mg++-dependent ATPase. Thus, the Arrhenius μ for the inactivation of the Mg++-dependent ATPase produced by eight minute preincubation is > 100 Kcals. These results are compared with the changes that are observed during the heat death of the whole animal, where exposure to 35°C produces a dramatic change in Na+ permeability within five minutes. Arrhenius μ for heat death is also > 100 Kcals and operates over the identical critical temperature range. It is suggested that the Mg++-dependent ATPase controls passive permeability in these excitable cells and the results also confirm the view that Mg++ and Na+-K+-Mg++ ATPases are separate enzymes.  相似文献   

20.
1. Daphnia pulex and Daphnia middendorffiana are commonly found in the Toolik Lake region of arctic Alaska. These two species are very similar morphologically, although their natural distributions differ markedly: D. pulex is restricted to shallow ponds, while D. middendorffiana is widely distributed and found in a variety of ponds and lakes. We compared the reproductive capabilities of D. pulex and D. middendorffiana grown under similar resource conditions and in the absence of the invertebrate predator Heterocope septentrionalis. In situ life table and mesocosm experiments were conducted in Toolik Lake and Dam Pond, habitats that have historically contained natural populations of D. middendorffiana, but never D. pulex. 2. Daphnia pulex exhibited a significantly higher net growth rate than D. middendorffiana in both life table and mesocosm experiments although D. pulex has never been found in either Toolik Lake or Dam Pond. Daphnia middendorffiana exhibited a negative net growth rate in Dam Pond, which had lower resource levels then Toolik Lake. Therefore, the smaller D. pulex appears to have a lower food threshold concentration than the larger D. middendorffiana. 3. Our results indicate that D. pulex is a superior resource competitor in the Toolik Lake region. These results combined with distributional patterns suggest that the restricted distribution of D. pulex in these arctic lakes and ponds cannot be explained by resource competition alone. We suggest that in the presence of H. septentrionalis, predation is an important factor structuring arctic zooplankton communities in the Toolik Lake region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号