首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF6]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF6]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98–99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58–60°C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF4]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF4]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.  相似文献   

2.
An Aspergillus oryzae whole-cell biocatalyst which coexpresses Fusarium heterosporum lipase (FHL) and mono- and di-acylglycerol lipase B (mdlB) in the same cell has been developed to improve biodiesel production. By screening a number of transformants, the best strain was obtained when FHL gene was integrated into A. oryzae chromosome using sC selection marker while mdlB was integrated using niaD selection marker. The reaction system using the lipase-coexpressing whole-cells was found to be superior in biodiesel production to others such as lipase-mixing and two-step reactions, affording the highest reaction rate and the highest ME content (98%). Moreover, an ME content of more than 90% was maintained during 10 repeated batch cycles. The whole-cell biocatalyst developed in this work would be promising biocatalysts for efficient biodiesel production.  相似文献   

3.
In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn−2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn−2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn−2 to the sn−1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production.  相似文献   

4.
The influence of the two most commonly used ionic liquids (1-butyl-3-methyl imidazolium tetrafluoroborate, [BMIM][BF4], 1-butyl-3-methyl imidazolium hexafluorophosphate, [BMIM][PF6]) and three selected organic solvents (dimethylsulfoxide, ethanol, methanol) on the growth of Escherichia coli, Pichia pastoris and Bacillus cereus was investigated. [BMIM][BF4] was toxic at 1% (v/v) on all three microorganisms. The minimal inhibitory concentration (MIC) of [BMIM][BF4] on E. coli growth was between 0.7 and 1% (v/v). In contrast, [BMIM][PF6] was less toxic for P. pastoris and B. cereus, whereas E. coli was not able to tolerate [BMIM][PF6] (MIC value: 0.3–0.7% v/v). Growth of P. pastoris was unaffected by [BMIM][PF6] at 10% (v/v). Similar results were found for dimethylsulfoxide. Thus, ionic liquids (ILs) can have substantial inhibitory effects on the growth of microorganisms, which should be taken into account for environmental reasons as well as for the use of ILs as co-solvents in biotransformations. Revisions requested 2 November 2005; Revisions received 20 December 2005  相似文献   

5.
The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF4]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF4]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF4]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF4]), and N-butylpyridinium tetrafluoroborate ([BPY][BF4]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π+-π interactions are only found in the [BMIM][BF4]-DBT and [BPY][BF4]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF4]-DBT >> [BMPiper][BF4]-DBT > [BMPyrro][BF4]-DBT > [BMmorpholinum][BF4]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.  相似文献   

6.
In this paper, partitioning behaviors of typical neutral (Alanine), acidic (Glutamic acid) and basic (Lysine) amino acids into imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] as extracting solvents were examined. [C6mim][BF4] showed the best efficiency for partitioning of amino acids. The partition coefficients of amino acids in ionic liquids were found to depend strongly on pH of the aqueous solution, amino acid and ionic liquid chemical structures. Different chemical forms of amino acids in aqueous solutions were pH dependent, so the pH value of the aqueous phase was a determining factor for extraction of amino acids into ionic liquid phase. Both water content of ionic liquids and charge densities of their anionic and cationic parts were important factors for partitioning of cationic and anionic forms of amino acids into ionic liquid phase. Extracted amino acids were back extracted into phosphate buffer solutions adjusted on appropriate pH values. The results showed that ionic liquids could be used as suitable modifiers on the stationary phase of an HPLC column for efficient separation of acidic, basic, and neutral amino acids.  相似文献   

7.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

8.
The accumulation of partial glycerides such as monoglyceride (MG) and diglyceride (DG) is one of the rate-limiting steps in plant oil methanolysis catalyzed by Rhizopus oryzae producing triacylglycerol lipase. To convert partial glycerides efficiently into their corresponding methyl esters (MEs), we attempted to use a mono- and diacylglycerol lipase (mdlB) derived from Aspergillus oryzae. By considering cost efficiency, R. oryzae and recombinant mdlB-producing A. oryzae were immobilized independently within polyurethane foam biomass support particles and directly utilized as a whole-cell biocatalyst. The mdlB-producing A. oryzae effectively exhibited substrate specificity toward MG and DG and was then used for the methanolysis of intermediate products (approximately 82% ME), which were produced using R. oryzae. In the presence of 5% water, the use of mdlB-producing A. oryzae resulted in less than 0.1% of MG and DG, whereas a considerable amount of triglyceride was present in the final reaction mixture. On the basis of these results, we developed a packed-bed reactor (PBR) system, which consists of the first column with R. oryzae and the second column containing both R. oryzae and mdlB-producing A. oryzae. Ten repeated-batch methanolysis cycles in the PBR maintained a high ME content of over 90% with MG and DG at 0.08–0.69 and 0.22–1.45%, respectively, indicating that the PBR system can be used for long-term repeated-batch methanolysis with partial glycerides at low levels. The proposed method is therefore effective for improving enzymatic biodiesel production.  相似文献   

9.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

10.
Lipase Pseudomonas cepacia (PS) catalyzed transesterification of ethyl 3-phenylpropanoate with eleven alcohols was investigated in three ionic liquids [ILs], [Bmim]BF4, [Bmim]PF6, and [Bmim]Tf2N, consisting of an identical cation and different anions. The yields were higher in hydrophobic ILs [Bmim]Tf2N (55–96%) and [Bmim]PF6 (22–95%), than in hydrophilic [Bmim]BF4 (0–19%). The incubation of lipase PS in hydrophobic ILs for a period of 20–300 days at room temperature resulted in an increased yield of 62–98% in [Bmim]Tf2N and 45–98% in [Bmim]PF6, respectively. The lipase PS-hydrophobic IL mixture was recycled five times without any decrease in the yield of the products. In another set of experiments, the hydrolytic activity of the enzyme was determined after incubation in each of the three ILs and in hexane for 20 days at room temperature. It was found to be 1.8- and 1.6-fold higher in [Bmim]Tf2N and [Bmim]PF6, respectively, remained unchanged in [Bmim]BF4 and was 1.6 times lower in hexane as compared to the non-incubated enzyme.  相似文献   

11.
Lipase-catalyzed esterification of glucose with fatty acids in ionic liquids (ILs) mixture was investigated by using supersaturated glucose solution. The effect of ILs mixture ratio, substrate ratio, lipase content, and temperature on the activity and stability of lipase was also studied. The highest yield of sugar ester was obtained in a mixture of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-methyl-3-octylimidazolium bis[(trifluoromethyl)-sulfonyl]amide ([Omim][Tf2N]) with a volume ratio of 9:1, while Novozym 435 (Candida antarctica type B lipase immobilized on acrylic resin) showed the optimal stability and activity in a mixture of [Bmim][TfO] and [Omim][Tf2N] with a 1:1 volume ratio. Reuse of lipase and ILs was successfully carried out at the optimized reaction conditions. After 5 times reuse of Novozym 435 and ILs, 78% of initial activity was remained.  相似文献   

12.
A comparison of the Pseudomonas cepacia lipase (lipase PS) catalyzed esterification of 3-(furan-2-yl) propanoic acid and transesterification of ethyl 3-(furan-2-yl) propanoate with six straight chain alcohols (propanol to octanol) in ionic liquids and hexane was carried out. The ionic liquids selected, [Bmim]BF4, [Bmim]PF6, and [Bmim]Tf2N, consisted of an identical cation and different anions. This is the first report on the biocatalyzed synthesis of these esters. In all the media, lipase PS catalyzed esterification of 3-(furan-2-yl) propanoic acid resulted in high yields of the esters compared to the transesterification of ethyl 3-(furan-2-yl) propanoate. [Bmim]Tf2N proved to be the best; yielding 98–67% of the product by lipase PS catalyzed esterification. The lipase PS–[Bmim]Tf2N and lipase PS–[Bmim]PF6 mixture was recycled five times without any decrease in the yields of the products and was found to be operationally stable up to 10 months at room temperature.  相似文献   

13.
Thermal deactivation kinetics of horseradish peroxidase (HRP) were studied from 45 to 90 °C in phosphate buffer and 5–25% (v,w/v) 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium chloride [BMIM][Cl]. HRP activity at 25 °C was not affected by the presence of ionic liquids up to 20% (v,w/v). Increasing the ionic liquids concentration up to 25% (v,w/v) changed the biphasic character of deactivation kinetics to an apparent single first-order step. The presence of 5–10% (v/v) [BMIM][BF4] significantly improved HRP thermal stability with lower activation energies for the deactivation second phase (83–87 kJ mol−1). After deactivation, enhanced activity regain of the enzyme, up to 70–80% of the initial activity, was found in 25% (v/v) [BMIM][BF4] and 10% (w/v) [BMIM][Cl] and correlated to prevalence of the deactivation first phase.  相似文献   

14.
Ionic liquids in the form of organic salts are being widely used as new solvent media. In this paper three positional isomers,o-amino benzoic acid,m-amino benzoic acid, andp-amino benzoic acids were separated with four different ionic liquids as mobile phase additives using high performance liquid chromatography (HPLC). The following ionic liquids were used: 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4]), 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS]), and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS]). The effects of the alkyl group length on the imidazolium ring and its counterion, and the concentrations of the ionic liquids on the retention factors and resolutions of amino benzoic acid isomers were tested. The results of the separations with ionic liquids as the eluents were better than those without ionic liquids. Excellent separations of the three isomers were achieved using 2.0≈8.0 mM/L [OMIm][MS] and 1.0≈8.0 mM/L [EMIm][MS] as the eluent modifiers.  相似文献   

15.
【目的】探讨复合酶协同催化体系在含水量较高的体系中催化油脂制备生物柴油的工艺条件。【方法】通过基因工程手段在毕赤酵母中分别高效分泌表达南极假丝酵母脂肪酶(CALB)和米根霉脂肪酶(ROL),构建CALB和ROL复合酶协同催化体系制备生物柴油,利用单因素实验优化工艺条件,以甲酯化得率作为复合酶协同催化体系效能的评价标准。【结果】优化工艺条件为:CALB?ROL最佳复合酶配比为7?3,每克大豆油中加入16 U的复合脂肪酶,甲醇与大豆油摩尔比为4?1,并按0 h时2?1醇油摩尔比,12 h和24 h时以1?1醇油摩尔比分批加入甲醇,含水量为30%-60%之间,40°C反应29-34 h,甲酯得率达到93%。【结论】该复合酶协同催化体系对环境友好,与常规酶法制备生物柴油工艺相比对酶的使用量和催化时间减少幅度都在50%以上,本复合酶协同催化体系能有效降低生物柴油制备成本,具有较好的工业化应用前景。  相似文献   

16.
17.
Hydroxynitrile Lyase Catalysis in Ionic Liquid-containing Systems   总被引:1,自引:0,他引:1  
Lou WY  Xu R  Zong MH 《Biotechnology letters》2005,27(18):1387-1390
The cleavage of mandelonitrile catalysed by hydroxynitrile lyases (HNL) from Prunus amygdalus (PaHNL) and Manihot esculenta (MeHNL) proceeded more rapidly in monophasic aqueous media containing 1-propyl-3-methylimidazolium tetrafluoroborate [C4MIm][BF4] than in media containing acetonitrile or THF. Both HNLs were much more thermostable in [C4MIm][BF4] than in acetonitrile or THF. The addition of each of the four ionic liquids 1-butyl-, 1-pentyl- and 1-hexyl-3-methylimidazolium tetrafluoroborates at 2–6% (v/v in the aqueous phase) increased both the enzyme activity and the product e.e. in the PaHNL-catalysed transcyanation in an aqueous/DIPE biphasic system. However, MeHNL was inactivated by the ionic liquids, as indicated by the decreased reaction rate, substrate conversion and product e.e.  相似文献   

18.
The enzymatic acylation of (RS)-phenylethylamine with different acyl donors catalysed by lipases, was studied in organic solvents with different hydrophobicities and in mixtures with ionic liquids ((ILs); [BMIm][BF4], [BMIm][SCN], [BMIm][Cl] and [BMIm][PF6]). Using lipases from Candida antarctica B (CAL-B) and from Aspergillus niger higher conversion degrees and E-values were obtained with ethyl acetate as the acyl donor. When CAL-B was used as the biocatalyst, in a two-phase system formed by [BMIm][X]/dichloromethane or [BMIm][X]/chloroform, the selectivity was better than that obtained in pure organic solvents. The selectivity was found to be related to individual anions in ILs. In this reaction, the ion effectiveness in enhancing the enzyme selectivity followed the series: Cl > SCN > BF4 > PF6 in mixtures with dichloromethane, and PF6 > BF4 > SCN > Cl in mixtures with chloroform.  相似文献   

19.
The inhibition mechanism of a water-miscible ionic liquid, N-butyl-3-methypyridinium tetrafluoroborate ([BMPy][BF4]), on the catalysis of horseradish peroxidase (HRP) was investigated. The K m value for the oxidation of guaiacol (2-methoxyphenol) with H2O2 catalyzed by HRP increased from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) [BMPy][BF4]. This increase of K m by the ionic liquid was elucidated to be caused by the strong stabilization of the ground state of guaiacol by the ionic liquid. On the contrary, the k cat value for the HRP-catalyzed reaction decreased from 13.8/sec in 100% water to 6.7/sec in 25% (v/v) [BMPy][BF4]. Such decrease of k cat value of HRP catalysis by the increasing content of [BMPy][BF4] was described using the noncompetitive inhibition of the enzyme by the ionic liquid. The value of the inhibition constant of [BMPy][BF4] was 1.48 M indicating that the ionic liquid exerts a weak noncompetitive inhibition effect on the HRP catalysis.  相似文献   

20.
Novozym 435-catalyzed synthesis of 6-O-lauroyl-d-glucose in ionic liquids (ILs) was investigated. The highest lipase activity was obtained in water-miscible [Bmim][TfO] which can dissolve high concentration of glucose, while the highest stability of lipase was shown in hydrophobic [Bmim][Tf(2)N]. The optimal activity and stability of lipase could be obtained in [Bmim][TfO] and [Bmim][Tf(2)N] mixture (1:1, v/v). Specifically, the activity of lipase was increased from 1.1 to 2.9 micromolmin(-1)g(-1) by using supersaturated glucose solution in this mixture, compared with reaction using saturated solution. After 5 times reuse of lipase, 86% of initial activity was remained in this mixture, while the residual activity in pure [Bmim][TfO] was 36%. Therefore, the productivity obtained by using ILs mixtures was higher than those in pure ILs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号