首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the phospholipase C gene was cloned intact, and it is likely that several additional genes were cloned on the 4.1-Mdal fragment of DNA. It was also found that some of these genes encode proteins which are the same molecular weight as some previously described Pi-repressible proteins of P. aeruginosa. The existence of a Pi regulon of P. aeruginosa is proposed. It is likely that one of these genes also regulates the level of pyocyanin production by P. aeruginosa and that one or more play a role in transport or binding of Pi. The availability of the hybrid plasmids described herein will be useful in further studies on the role of this hemolysin in the virulence of P. aeruginosa and in the study of the genetics and physiology of Pi-regulated proteins.  相似文献   

2.
张悦  赵鑫  侯峥  王艳敏  王玉成  王超 《植物研究》2019,39(1):113-122
通过对刚毛柽柳转录组分析,克隆获得了一条与S-腺苷甲硫氨酸合成酶(SAMS)基因同源性高的基因,命名为ThSAMS。序列分析结果表明:ThSASM基因全长cDNA为1185bp,编码394个氨基酸,编码蛋白相对分子质量为97.85kDa,理论等电点为5.02。通过生物信息学分析表明,ThSASM基因编码的氨基酸与其他物种SAMS基因编码的氨基酸具有很高的同源性,其中与枣的同源性最高,达95%。实时荧光定量PCR(quantitativereal-timePCR,qRT-PCR)分析表明,ThSASM表达受NaCl、聚乙二醇(PEG)和ABA处理做出应答,暗示ThSASM可能参与了刚毛柽柳对盐和干旱的胁迫应答,为进一步研究SAMS基因在植物胁迫应答中的功能及作用机制提供了参考依据。  相似文献   

3.
The rnc operon from Pseudomonas aeruginosa has been cloned and characterized. The three genes comprising this operon, rnc, era, and recO, are arranged similarly to those in some other gram-negative bacteria. Multicopy plasmids carrying the rnc operon of P. aeruginosa functionally complement mutations of the rnc, era, and recO genes in Escherichia coli. In particular, the P. aeruginosa era homolog rescues the conditional lethality of era mutants in E. coli, and the presumptive protein has 60% identity with the Era of E. coli. We discuss these data and evidence suggesting that a GTPase previously purified from P. aeruginosa and designated Pra is not an Era homolog.  相似文献   

4.
5.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.  相似文献   

6.
大肠杆菌ppsA基因的克隆表达   总被引:1,自引:0,他引:1  
L-苯丙氨酸是人体内8种必需氨基酸之一,是医药大输液的基本成分.苯丙氨酸和门冬氨酸组成的二肽甲酯是一种新型甜味剂,市场需求正在不断增长,因此构建高产酸的苯丙氨酸基因工程菌已成为形势所趋.苯丙氨酸工程菌的构建是基于芳香族氨基酸的生化合成途径进行的,包括单基因表达工程菌和多基因表达工程菌.单基因表达主要集中在芳香族转氨酶tyrB基因上,国内外有不少报道[1~3],苯丙酮酸转化为苯丙氨酸的转化率约为91%.在多基因表达方面,Ikeda等[4]克隆了3个芳香族氨基酸合成的有关基因,并进行多基因表达,苯丙氨酸产量为28g/L.磷酸烯醇式丙酮酸(P…  相似文献   

7.
The actinomycin synthetases ACMS I, II, and III catalyze the assembly of the acyl peptide lactone precursor of actinomycin by a nonribosomal mechanism. We have cloned the genes of ACMS I (acmA) and ACMS II (acmB) by hybridization screening of a cosmid library of Streptomyces chrysomallus DNA with synthetic oligonucleotides derived from peptide sequences of the two enzymes. Their genes were found to be closely linked and are arranged in opposite orientations. Hybridization mapping and partial sequence analyses indicate that the gene of an additional peptide synthetase, most likely the gene of ACMS III (acmC), is located immediately downstream of acmB in the same orientation. The protein sequence of ACMS II, deduced from acmB, shows that the enzyme contains two amino acid activation domains, which are characteristic of peptide synthetases, and an additional epimerization domain. Heterologous expression of acmB from the mel promoter of plasmid PIJ702 in Streptomyces lividans yielded a functional 280-kDa peptide synthetase which activates threonine and valine as enzyme-bound thioesters. It also catalyzes the dipeptide formation of threonyl–l-valine, which is epimerized to threonyl–d-valine. Both of these dipeptides are enzyme bound as thioesters. This catalytic activity is identical to the in vitro activity of ACMS II from S. chrysomallus.The actinomycins are a class of chromopeptide lactones produced by various Streptomyces strains. They contain two pentapeptide lactone rings attached to chromophoric 4,6-dimethylphenoxazinone-1,9-dicarboxylic acid (actinocin) in an amide-like fashion. Actinocin is formally derived from the compound 4-methyl-3-hydroxyanthranilic acid (4-MHA), but actually the bicyclic actinomycins arise from the oxidative condensation of two preformed monocyclic 4-MHA pentapeptide lactones (12). Previous investigations have revealed that the formation of the 4-MHA pentapeptide lactones is catalyzed by three actinomycin synthetases (ACMS I, II, and III) (13, 15). ACMS I (45 kDa) is a 4-MHA–AMP ligase which activates 4-MHA as adenylate. The five amino acids of the pentapeptide lactone ring of actinomycin (NH2-cyclo[Thr–d-Val–Pro–N-methyl-Gly–N-methyl-Val] for actinomycin D) are assembled by ACMS II (280 kDa) and ACMS III (480 kDa) which from their properties belong to the class of peptide synthetases (13, 26, 27). ACMS II catalyzes the activation of threonine and valine. In the presence of ACMS I, which supplies 4-MHA–adenylate, 4-MHA–threonine and 4-MHA–threonyl–d-valine (via 4-MHA–threonyl–l-valine) are formed on the surface of ACMS II. In the absence of 4-MHA or ACMS I, purified ACMS II can synthesize both threonyl–l-valine and threonyl–d-valine, though to a lesser extent than the corresponding 4-MHA dipeptides can. The epimerization of valine is catalyzed by ACMS II at the acyl-dipeptide stage. An analysis of ACMS III suggests that it elongates the 4-MHA–Thr–d-Val dipeptide by successive incorporation of proline, N-methylglycine (sarcosine), and N-methyl-l-valine into the growing peptide chain (13). N-methylation is an additional feature of ACMS III. A total cell-free system for 4-MHA pentapeptide lactone synthesis is not available yet. Thus, it is not known how 4-MHA dipeptide transfer from ACMS II to ACMS III is accomplished, nor is the mechanism of lactone formation and release from the 4-MHA pentapeptide known.The available data indicate that ACMS II and ACMS III contain two- and three-amino-acid activation domains, respectively. It is known that activation domains of peptide synthetases are highly conserved in their sequences and are composed of a segment for amino acid adenylation and a segment for binding the activated amino acid as a thioester (17, 24, 25, 32). Thioester formation occurs via the thiol group of 4′-phosphopantetheine, which is a covalently bound cofactor of the activation domain. ACMS II and III both contain 4′-phosphopantetheine. In contrast, ACMS I has no 4′-phosphopantetheine cofactor, consistent with the finding that it does not form a thioester with 4-MHA. Data from previous work pointed instead to the formation of a 4-MHA thioester with ACMS II (26). In order to investigate the modular structure of the ACMSs and the reaction mechanisms in more detail, we set out to clone the ACMS genes from Streptomyces chrysomallus with oligonucleotide probes derived from partial sequences of ACMS I and II. We show that the genes of ACMS I and II and of a third peptide synthetase, most probably the gene of ACMS III (acmA, acmB, and acmC, respectively) are closely linked, forming a gene cluster. A total sequence determination of acmB and the characterization of the heterologously expressed functional active gene product confirm the significance of this peptide synthetase gene cluster.  相似文献   

8.
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm.  相似文献   

9.
A gene bank was constructed from Pseudomonas aeruginosa PAO1 and used to complement three P. aeruginosa elastase-deficient strains. One clone, pRF1, contained a gene which restored elastase production in two P. aeruginosa isolates deficient in elastase production (PA-E15 and PAO-E105). This gene also encoded production of elastase antigen and activity in Escherichia coli and is the structural gene for Pseudomonas elastase. A second clone, pHN13, contained a 20-kilobase (kb) EcoRI insert which was not related to the 8-kb EcoRI insert of pRF1 as determined by restriction analysis and DNA hybridization. A 2.2-kb SalI-HindIII fragment from pHN3 was subcloned into pUC18, forming pRB1822-1. Plasmid pRB1822-1 restored normal elastolytic activity to PAO-E64, a mutant for elastase activity. Clones derived from pHN13 failed to elicit elastase antigen or enzymatic activity in E. coli.  相似文献   

10.
DNA gyrase (Topoisomerase II) from Pseudomonas aeruginosa   总被引:13,自引:0,他引:13  
DNA gyrase (Topoisomerase II) has been purified from Pseudomonas aeruginosa strain PAO. This enzyme is inhibited by novobiocin and nalidixic acid. DNA gyrase from P. aeruginosa is resistant to a much higher level of nalidixic acid than is Escherichia coli DNA gyrase. This increased level of resistance may explain, at least in part, the higher levels of natural resistance exhibited by P. aeruginosa toward nalidixic acid.  相似文献   

11.
12.
A fengycin synthetase gene, fenB, has been cloned and sequenced. The protein (FenB) encoded by this gene has a predicted molecular mass of 143.6 kDa. This protein was overexpressed in Escherichia coli and was purified to near homogeneity by affinity chromatography. Experimental results indicated that the recombinant FenB has a substrate specificity toward isoleucine with an optimum temperature of 25°C, an optimum pH of 4.5, a Km value of 922 μM, and a turnover number of 236 s−1. FenB also consists of a thioesterase domain, suggesting that this protein may be involved in the activation of the last amino acid of fengycin.  相似文献   

13.
本文根据遗传互补原理,利用大肠杆菌亮氨酰-tRNA合成酶基因(lenS)的温度敏感突变株KL231,从大肠杆菌基因文库一克隆(λ15D7)中筛选出带完整leuS基因的DNA片段。该片段长度为3.2kb。对此片段做了14种限制性内切酶图谱分析和部分DNA序列鉴定,并与文献报道的lenS基因序列进行了比较。发现在编码区和3’端非编码区各有一对碱基发生了转换。另外在3’端非编码区有一对碱基缺失。编码区的碱基对转换导致编码的氨基酸由组氨酸变成了精氨酸。带有lenS基因的质粒(pLeuS91)转入大肠杆菌TGI菌株中,测得转化子的亮氨酰-tRNA合成酶比活力是TG1菌株的10倍以上。  相似文献   

14.
The glutamyl-tRNA synthetase (GluRS) of Bacillus subtilis 168T aminoacylates with glutamate its homologous tRNA(Glu) and tRNA(Gln) in vivo and Escherichia coli tRNA(1Gln) in vitro (Lapointe, J., Duplain, L., and Proulx, M. (1986) J. Bacteriol. 165, 88-93). The gltX gene encoding this enzyme was cloned and sequenced. It encodes a protein of 483 amino acids with a Mr of 55,671. Alignment of the amino acid sequences of four bacterial GluRSs (from B. subtilis, Bacillus stearothermophilus, E. coli, and Rhizobium meliloti) gives 20% identity and reveals the presence of several short highly conserved motifs in the first two thirds of these proteins. Conserved motifs are found at corresponding positions in several other aminoacyl-tRNA synthetases. The only sequence similarity between the GluRSs of these Bacillus species and the E. coli glutaminyl-tRNA synthetase (GlnRS), which has no counterpart in the E. coli GluRS, is in a segment of 30 amino acids in the last third of these synthetases. In the three-dimensional structure of the E. coli tRNA(Gln).GlnRS.ATP complex, this conserved peptide is near the anticodon of tRNA(Gln) (Rould, M. A., Perona, J. J., S?ll, D., and Steitz, T. A. (1989) Science 246, 1135-1142), suggesting that this region is involved in the specific interactions between these enzymes and the anticodon regions of their tRNA substrates.  相似文献   

15.
Pseudomonas aeruginosa produces the phenolic siderophore pyochelin under iron-limiting conditions. In this study, an Fe(III)-pyochelin transport-negative (Fpt-) strain, IA613, was isolated and characterized. 55Fe(III)-pyochelin transport assays determined that no Fe(III)-pyochelin associated with the Fpt- IA613 cells while a significant amount associated with KCN-poisoned Fpt+ cells. A P. aeruginosa genomic library was constructed in the IncP cosmid pLAFR1. The genomic library was mobilized into IA613, and a recombinant cosmid, pCC41, which complemented the Fpt- phenotype of IA613, was isolated. pCC41 contained a 28-kb insert of P. aeruginosa DNA, and the Fpt(-)-complementing region was localized to a 3.6-kb BamHI-EcoRI fragment by deletion and subcloning of the insert. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of IA613 revealed that it lacked a 75-kDa outer membrane protein present in Fpt+ strains. IA613 strains bearing plasmid pRML303, which carries the 3.6-kb BamHI-EcoRI fragment of pCC41, expressed the 75-kDa outer membrane protein and demonstrated a 55Fe(III)-pyochelin transport phenotype identical to that of a wild-type Fpt+ strain. Minicell analysis demonstrated that the 3.6-kb BamHI-EcoRI fragment of pCC41 encoded a protein of approximately 75 kDa. The results presented here and in a previous report (D. E. Heinrichs, L. Young, and K. Poole, Infect. Immun. 59:3680-3684, 1991) lead to the conclusion that the 75-kDa outer membrane protein is the high-affinity receptor for Fe(III)-pyochelin in P. aeruginosa.  相似文献   

16.
Pseudomonas aeruginosa K407, a mutant lacking a high-affinity 80,000-molecular-weight ferric enterobactin receptor protein (80K protein), exhibited poor growth (small colonies) on iron-deficient succinate minimal medium containing ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA) and enterobactin. The gene encoding the ferric enterobactin receptor was cloned by complementation of this growth defect. The complementing DNA was subsequently localized to a 7.1-kilobase-pair (kb) SstI-HindIII fragment which was able to restore synthesis of the 80K protein in strain K407 and also to direct the synthesis of high levels of a protein of the same molecular weight in the outer membranes of Escherichia coli fepA strains MT912 and IR20. Moreover, the fragment complemented the fepA mutation in MT912, restoring both growth in EDDHA-containing medium and enterobactin-dependent uptake of 55Fe3+. Expression of the P. aeruginosa receptor in E. coli IR20 was shown to be regulated by both iron and enterobactin. The complementing DNA was further localized to a 5.3-kb SphI-SstI fragment which was then subjected to deletion analysis to obtain the smallest fragment capable of directing the synthesis of the 80K protein in the outer membrane of strain K407. A 3.2-kb DNA fragment that restored production of the receptor in strain K407 was subsequently isolated. The fragment also directed synthesis of the protein in E. coli MT912 but at levels much lower than those previously observed. Nucleotide sequencing of the fragment revealed an open reading frame (designated pfeA for Pseudomonas ferric enterobactin) of 2,241 bp capable of encoding a 746-amino-acid protein with a molecular weight of 80,967. The PfeA protein showed more than 60% homology to the E. coli FepA protein. Consistent with this, the two proteins showed significant immunological cross-reactivity.  相似文献   

17.
《Gene》1996,172(1):165-166
The CDP-diglyceride synthetase (CDS)-encoding gene (cds) from Pseudomonas aeruginosa PAO1 was cloned and sequenced. The gene possessed an open reading frame of 813 bp capable of encoding a putative polypeptide of 271 amino acids (aa) (28 699 Da). The deduced aa sequence of CDS revealed a 67% similarity (45% identity) to Escherichia coli CDS.  相似文献   

18.
A gene (rpoDA) of Pseudomonas aeruginosa whose gene product has a homologous function and structure with the principal sigma factor of Escherichia coli was cloned and sequenced. The DNA region corresponding to one of the two hybridization signals found in P. aeruginosa DNA with a synthetic oligonucleotide probe (rpoD probe) was shown to be able to complement a temperature sensitive mutation of Escherichia coli rpoD gene. The amino acid sequence deduced from the nucleotide sequence of rpoDA showed an extensive homology with that of the principal sigma factor of E. coli throughout the entire region, which indicates that the two gene products have an essentially identical domain structure. A common basic structure observed among principal sigma factors of different eubacterial strains was proposed. RpoDA protein was identified in the extract of the cell carrying a plasmid clone with the rpoDA gene insert by Western blot analysis.  相似文献   

19.
20.
The cytochrome c-551 gene from Pseudomonas aeruginosa was cloned by using two oligonucleotide probes, which had been synthesized based on the known primary structure of the protein. The restriction map of the cloned DNA and sequence analysis showed that the cytochrome c-551 gene is located 50 bp downstream of the nitrite reductase gene, which has recently been cloned and sequenced. DNA sequence analysis also indicated that cytochrome c-551 is synthesized in vivo as a precursor having an amino-terminal signal sequence consisting of 22 amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号