首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

2.
A 2 × 6 unbalanced fixed effects factorial treatment design was used to examine the effects of a collector-filterer on leaf processing rates of American Cottonwood (Populus deltoides Bartr.) in an artificial stream over a six week period. Pre-leached leaves were placed into 30 small enclosures; collector-filterer caddisflies (Hydropsyche betteni Ross) were added to 18 enclosures resulting in two treatment factors (leaves with and without caddisflies). Changes in leaf dry-weight and caddisfly biomass were determined at weekly sampling intervals. Leaf processing rates were significantly different between treatments over time, with enclosures without caddisflies exhibiting a greater weight loss (higher k value) than enclosures with caddisflies (p < 0.01). The reduction in processing rates of the leaves due to the presence of caddisflies was attributed to the construction of retreats by these collector-filterers. Under the influence of the caddisfly, leaf material may be able to remain as a viable food resource for a longer period in the stream.  相似文献   

3.
1. Spring‐fed streams, with temperatures ranging from 7.1 to 21.6 °C, in an alpine geothermal area in SW Iceland were chosen to test hypotheses on the effects of nutrients and temperature on stream primary producers. Ammonium nitrate was dripped into the lower reaches of eight streams, with higher reaches being used as controls, during the summers of 2006 and 2007. Dry mass of larger primary producers, epilithic chlorophyll a and biovolumes of epilithic algae were measured. 2. Bryophyte communities were dominated by Fontinalis antipyretica, and biomass was greatest in the warmest streams. Jungermannia exsertifolia, a liverwort, was found in low densities in few samples from cold streams but this species was absent from the warmest streams. 3. Nutrient enrichment increased the biomass of bryophytes significantly in warm streams. No effects of the nutrient addition were detected on vascular plants. The biomass of larger filamentous algae (mainly Cladophora spp.) was significantly increased by nutrient enrichment in cold streams but reduced by nutrients in warm streams. Thalloid cyanobacteria (Nostoc spp.) were not affected by nutrients in cold streams but decreased with nutrient addition in warm streams. Epilithic algal chlorophyll a was increased by nutrients in all streams and to a greater extent in 2007 than in 2006. Nutrient addition did not affect the epilithic chlorophyll a differently in streams of different temperatures. 4. There were small differential effects of nutrients, influenced by pH and conductivity, on different epilithic algal groups. 5. As global temperatures increase, animal husbandry and perhaps crop agriculture are likely to increase in Iceland. Temperature will directly influence the stream communities, but its secondary effects, manifested through agricultural eutrophication, are likely to be much greater.  相似文献   

4.
Two species in the caddisfly genus Gumaga (Sericostomatidae) are currently recognized in North America: Gumaga nigricula (McLachlan, 1871) and Gumaga griseola (McLachlan, 1871). Ecological and morphological studies over the last 20 years indicated that both species were either extremely variable or that morphologically cryptic species were unknowingly being included in the studies. The study reported here examined whether genetic characters (as measures of reproductive isolation and genetic differentiation) could resolve the taxonomic issues concerning Gumaga, and consequently provide insight into the observed ecological and morphological variation. Allozyme electrophoresis was used to examine the genetic relationships among larvae of Gumaga collected from five streams and two springbrooks in northern California. For each specimen, 18 enzymes representing 21 presumptive gene loci were scored. Genetic variability was high at all but one site: 14.3–47.6% of the loci were polymorphic (3–10 loci per site) and heterozygosity averaged 5.9–20.7%. Six genetically distinct groups of individuals were identified (i.e., Gumaga types A, B, C, D, E, F). Mean Nei's genetic distances between groups ranged from 0.371 (type A versus type B) to &gt;1.0 (type F versus types A, B, D, or E). The high degree of genetic differentiation among groups is maintained even when the groups are in close proximity (e.g., Gumaga types A and E at the same site and Gumaga types A, B, and C within the same drainage basin). In addition, previous studies have found evidence of premating mechanisms that limit interbreeding among Gumaga types A, B, and D. Thus, it appears that these six groups represent reproductively isolated species rather than genetic variants of one or two species. Extensive morphological and genetic studies are necessary to clarify taxonomic relationships within the genus Gumaga, but the results of this and other genetic analyses of aquatic insects illustrate the potential insight that this approach can provide to taxonomic, behavioral, and ecological studies. Furthermore, these results also illustrate how unusual (and what is often perceived as interesting) ecological variability observed for a single species may in fact reflect the presence of morphologically cryptic species.  相似文献   

5.
Larned  Scott T.  Santos  Scott R. 《Hydrobiologia》2000,432(1-3):101-111
To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.  相似文献   

6.
Species replacements along freshwater permanence gradients are well documented, but underlying mechanisms are poorly understood for most taxa. In subalpine wetlands in Colorado, the relative abundance of caddisfly larvae shifts from temporary to permanent basins. Predators on caddisflies also shift along this gradient; salamanders (Ambystoma tigrinum nebulosum) in permanent ponds are replaced by predaceous diving beetles (Dytiscus dauricus) in temporary habitats. We conducted laboratory and field experiments to determine the effectiveness of caddisfly cases in reducing vulnerability to these predators. We found that larvae of a temporary-habitat caddisfly (Asynarchus nigriculus) were the most vulnerable to salamanders. Two relatively invulnerable species (Limnephilus externus, L. picturatus) exhibited behaviors that reduced the likelihood of detection and attack, whereas the least vulnerable species (Agrypnia deflata) was frequently detected and attacked, but rarely captured because cases provided an effective refuge. Vulnerability to beetle predation was also affected by cases. The stout cases of L. externus larvae frequently deterred beetle larvae, whereas the tubular cases of the other species were relatively ineffective. Two of these vulnerable species (A. nigriculus and L. picturatus) often co-occur with beetles; thus, case construction alone is insufficient to explain patterns of caddisfly coexistence along the permanence gradient. One explanation for the coexistence of these two species with beetles is that they develop rapidly during early summer and pupate before beetle larvae become abundant. One species (L. picturatus) pupates by burying into soft substrates that serve as a refuge. The other (A. nigriculus) builds stone pupal cases, which in field experiments, more than doubles survival compared to organic pupal cases. The combined results of these experiments suggest that caddisfly distributions along permanence gradients depend on a suite of primary and secondary predator defenses that include larval and pupal case structure, predator-specific escape behaviors, and the phenology of larval development.  相似文献   

7.
Absorption spectra and photosynthetic action spectra have been determined for living Anacystis grown in complete and iron-deficient inorganic media. The absorption studies have shown a spectral shift from 679 nm to 673 nm in the chlorophyll a absorption peak when the algae had to grow without iron. The shift is believed to reflect a changed ratio between at least two chlorophyll a forms denoted Ca670 and Ca680 in this work. Action spectra determinations have revealed a similar shift from 677 nm to 672 nm in the photosynthetic activity peak of chlorophyll a when Anacystis was transferred to a medium without iron. It is proposed that both Ca670 and Ca680 participate in light absorption for photo-system I.  相似文献   

8.
9.
Phytoplankton pigments were studied in seven soft water, weakly mineralized karst lakes in central Russia (Vladimir oblast). The lakes Kshchara, Sankhar, Yukhor, Bol’shoye Poridovo, Svetlen’koye, Bol’shie, and Malye Garavy were investigated. The seasonal dynamics, vertical distribution of chlorophyll a, and its content in the phytoplankton biomass were considered. The relationship between chlorophyll a content and abiotic factors was analyzed. In addition to algae pigments, high concentrations of bacterial chlorophyll d were recorded in meta- and hypolimnetic layers of lakes Yukhor, Kshchara, Sankhar, and Svetlen’koye.  相似文献   

10.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

11.
1.?In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the release of detritus-bound nutrients and energy. 2.?Detritus decay rates (k, mass loss) increased threefold, and the loss of nitrogen (N) and phosphorus (P) from detrital substrates doubled across a range of historically observed caddisfly densities. Ammonium and total soluble phosphorus concentrations in the water column also increased with caddisfly density on some dates. Decay rates, nutrient release and the change in total detritivore biomass all exhibited threshold or declining responses at the highest densities. 3.?We attributed these threshold responses in biophysical processes to intraspecific competition for limiting resources manifested at the population level, as density-dependent per-capita consumption, growth, development and case : body size in caddisflies was observed. Moreover, caddisflies increasingly grazed on algae at high densities, presumably in response to limiting detrital resources. 4.?These results provide evidence that changes in population size of a common species will have nonlinear, threshold effects on the rates of biophysical processes at the ecosystem level. Given the ubiquity of negative density dependence in nature, nonlinear consumer density-ecosystem function relationships should be common across species and ecosystems.  相似文献   

12.
Over 100 species of red algae have been described as parasites on other red algae, but the majority show some degree of pigmentation. This raises the question of their parasitic status, especially their abilities to photosynthesize and their dependence on their host for fixed carbon. Are they considered parasites only based on morphological characters, for example, reduced size and secondary pit connection to the host? Translocation of nutrients from host to parasite have been shown for very few red algal parasites, and these were mostly unpigmented. This study investigated three pigmented red algal parasites (Rhodophyllis parasitica, Vertebrata aterrimophila and Pterocladiophila hemisphaerica) from New Zealand. We quantified their chlorophyll a content and also measured their PSII capacity using PAM fluorometry. All three parasites contained chlorophyll a. The parasites Rhodophyllis parasitica and Vertebrata aterrimophila were not able to photosynthesize and must therefore be fully nutritional dependent on their host. The parasite Pterocladiophila hemisphaerica was able to photosynthesize independently, but based on molecular characteristics we suggest that it relies on the host plastid to do photosynthesis. Our results support the parasitic status of all three species and highlights the necessity of more studies investigating the differences in host dependency in red algal parasites.  相似文献   

13.
Summary High Performance Liquid Chromatography analysis of algal pigments from inter- and subtidal (deep and shallow) sediments from the Kerguelen Islands showed clear differences in the pigment composition at the different stations. High concentrations of chlorophyll c and fucoxanthin were present at all locations, indicating significant diatom densities, chlorophyll b was detected at all sites. At one station the other green algal pigments were also present; here green algae contributed more to chlorophyll a concentrations than diatoms, as estimated by using pigment ratios and microscopic observations. At another location chlorophyll b was associated with a high concentration of diadinoxanthin, indicating an abundance of euglenoids. This indicates that chemotaxonomy can be powerful tool in microphytobenthos studies since enumeration of living cells are difficult as many algae are attached to sediment particles (epipsammic algae). Ways of diagenesis, carotenoid degradation and the role of grazing are briefly mentioned. Phaeophorbide a-like pigments were the most significant chlorophyll a degradation products, with concentrations up to 110 g · g–1 dry weight sediment, i.e. 10 times the chlorophyll a concentration. Some taxonomic estimations, based on pigments ratios, and their limits, are discussed.  相似文献   

14.
Migratory animals often transfer nutrients between ecosystems, enhancing productivity in the subsidized system. Most research on nutrient subsidies by migratory fishes has focused on Pacific salmon, whose semelparous life history is unusual among migratory fishes. To test whether iteroparous species can provide ecologically important nutrient inputs to stream ecosystems, we experimentally blocked the migration of suckers (Catostomidae) midway up an oligotrophic tributary of Lake Michigan. Comparing reaches upstream of the barrier to downstream reaches containing thousands of breeding fish, we found that suckers elevated phosphorus and nitrogen concentrations three- to five-fold. Algal accrual was doubled and caddisflies grew 12% larger in subsidized reaches relative to reference reaches. An enclosure experiment demonstrated that caddisflies with access to a fish carcass rapidly became enriched in 15N and 13C, and experimental carcass additions were rapidly colonized by high densities of caddisflies. However, under natural conditions below the experimental barrier, caddisflies became enriched in 15N but not 13C, indicating that fish-derived nutrients entered the stream food web primarily through indirect pathways rather than direct consumption of carcasses or gametes. At pupation, an average of 18% of caddisfly tissue N below the barrier was sucker-derived. In comparison to our focal stream, a reference stream with few suckers showed no seasonal or longitudinal patterns in nutrients and stable isotopes. These results demonstrate that iteroparous fish migrations can spur productivity via nutrient subsidies, despite low mortality rates. Thus, concerns about negative ecosystem-level consequences of blocking migrations of semelparous fishes are also applicable to iteroparous species when migrations are large.  相似文献   

15.
Photosynthesis is one of the most important metabolic processes of algae; which is altered as a stress response. During mass cultivation of algae, temperature rise and high light are major factors that affect biomass productivity. High temperature affects photosystem II (PSII) complex irreversibly, damaging intermolecular interactions in it. However, the impact of high temperature on photosynthesis is highly variable among different algal species, depending on the prior acclimation to environmental conditions they were exposed to. The acclimation plays an important role in combating high temperature stress via regulation of photosynthetic responses. Chlorophyll a fluorescence is a highly sensitive, non‐destructive and reliable tool for such measurements of photosynthetic parameters, which provides information about algal photosynthetic performance under given conditions. To understand the effect of heat stress on the responses of high light acclimated alga Chlorella saccharophila, chlorophyll a fluorescence transients were measured after heat exposure at 40°C. Our study demonstrates that rise in temperature for short duration; during open field cultivation reversibly affects the efficiency of PSII in light acclimated alga C. saccharophila. The effects of heat stress on chlorophyll a fluorescence in this alga, grown under high light (max‐1600 μmol photons m?2 s?1) are presented here; they are used to infer changes in photosynthetic process during its exposure to heat, as well as their recovery after 72 h. We speculate that heat resistance may have been acquired due to prior exposures to high light.  相似文献   

16.
Anacystis nidulans was grown at two different levels of white light, 7 and50 W.m?2. The cells were disrupted through French press treatment, and phycocyanin-free photosynthetic lamellae were obtained from the homogenate by fractionated centrifugation. Comparative absorption studies of the lamellae revealed that high intensity gave an increased carotenoid content relative to chlorophyll a. The spectral characteristics of the cell-free supernatants were also analysed. The high light intensity gave increased contents of both pteridines (410 nm) and allophycocyanin (655 nm) compared with the contents in algae grown at the low light level.  相似文献   

17.
Red algae contain two types of light‐harvesting antenna systems, the phycobilisomes and chlorophyll a binding polypeptides (termed Lhcr), which expand the light‐harvesting capacity of the photosynthetic reaction centers. In this study, photosystem I (PSI) and its associated light‐harvesting proteins were isolated from the red alga Cyanidioschyzon merolae. The structural and functional properties of the largest PSI particles observed were investigated by biochemical characterization, mass spectrometry, fluorescence emission and excitation spectroscopy, and transmission electron microscopy. Our data provide strong evidence for a stable PSI complex in red algae that possesses two distinct types of functional peripheral light‐harvesting antenna complex, comprising both Lhcr and a PSI‐linked phycobilisome sub‐complex. We conclude that the PSI antennae system of red algae represents an evolutionary intermediate between the prokaryotic cyanobacteria and other eukaryotes, such as green algae and vascular plants.  相似文献   

18.
Lipid peroxidation and decrease in chlorophyll-a and chlorophyll-b content in Scenedesmus cells was followed in the course of time. Addition of diquat to the algae in the light causes lipid peroxidation and a decrease in chlorophyll content. This decrease is mainly due to chlorophyll-a, the concentration of chlorophyll-b remains more or less constant during the experiment. In the presence of N′-(3,4-dichlorophenyl)-NN-dimethylurea (DCMU), of cysteine, or during nitrogen-flushing of the algal suspension, the lipid peroxidation caused by diquat is strongly suppressed. The decrease in chlorophyll-a content caused by diquat is somewhat smaller in the presence of DCMU or during nitrogen-flushing than with diquat alone, but is not influenced by cysteine. The chemical antioxidant butylated hydroxytoluene does not affect lipid peroxidation and chlorophyll destruction caused by diquat.  相似文献   

19.
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7–4.5) µg/cm2 for epipsammon, 9.4 (7.4–11.9) µg/cm2 for epipelon and 6.7 (5.7–7.8) µg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 µg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 µg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton‐rich lowland rivers with sandy or muddy sediments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号