首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is an important therapeutic strategy to protect mitochondria from oxidative stress, especially during ischemia–reperfusion. In the present study, an attempt has been made to evaluate the protective effects of caffeic acid phenethyl ester (CAPE) and its related phenolic compounds on mouse brain and liver mitochondria injury induced by in vitro anoxia–reoxygenation. Added before anoxia or reoxygenation, CAPE markedly protected coupled respiration with the decrease in state 4 and the increases in state 3, respiratory control ratio (RCR) and ADP/O ratio in a concentration-dependent manner. CAPE effectively protected mitochondria by inhibiting the mitochondrial membranes fluidity decrease, the lipoperoxidation and the protein carbonylation increase, which indicated its protective action against the mitochondrial oxidative damage. Meanwhile, CAPE blocked the enhanced release of cardiolipin (CL) and cytochrome c (Cyt c). The related phenolic compounds like caffeic acid (CA), ferulic acid (FA) and ethyl ferulate (EF) also had different-degree protective effects. CAPE and CA were more potent than FA and EF. Their structural differences played the key role in their activity levels. These results suggest that CAPE and its related phenolic compounds protect mitochondria mainly correlated to their antioxidative activities and may be of interest for the prevention and therapy of ischemia–reperfusion injuries.  相似文献   

2.
A novel mitochondria-targeted antioxidant (TPP-OH) was synthesized by attaching the natural hydrophilic antioxidant caffeic acid to an aliphatic lipophilic carbon chain containing a triphenylphosphonium (TPP) cation. This compound has similar antioxidant activity to caffeic acid as demonstrated by measurement of DPPH/ABTS radical quenching and redox potentials, but is significantly more hydrophobic than its precursor as indicated by the relative partition coefficients. The antioxidant activity of both compounds was intrinsic related to the ortho-catechol system, as the methoxylation of the phenolic functions, namely in TPP-OCH(3) and dimethoxycinnamic acid, gave compounds with negligible antioxidant action. The incorporation of the lipophilic TPP cation to form TTP-OH and TPP-OCH(3) allowed the cinnamic derivatives to accumulate within mitochondria in a process driven by the membrane potential. However, only TPP-OH was an effective antioxidant: TPP-OH protected cells against H(2)O(2) and linoleic acid hydroperoxide-induced oxidative stress. As mitochondrial oxidative damage is associated with a number of clinical disorders, TPP-OH may be a useful lead that could be added to the family of mitochondria-targeted antioxidants that can decrease mitochondrial oxidative damage.  相似文献   

3.
Feng Y  Lu Y  Lin X  Gao Y  Zhao Q  Li W  Wang R 《Life sciences》2008,82(13-14):752-763
The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.  相似文献   

4.
To investigate the possible mechanism of the therapeutic action of propolis, we studied: (a) the effect of propolis, its components, caffeic acid phenethyl ester (CAPE), caffeic acid (CA), quercetin and naringenin, as well as the synthetic compounds indomethacin (IM) and nordihydroguaiaretic acid (NDGA), and a novel lipoxygenase inhibitor N,N′-dicyclohexyl-O-(3,4-dihydroxycinnamoyl)isourea (DCHCU) on eicosanoid production by mouse peritoneal macrophages in vitro; (b) the effect of IM, NDGA, CA, CAPE, DCHCU and propolis on eicosanoid production during acute inflammation in vivo; and (c) the ex vivo and in vivo effect of dietary propolis on arachidonic acid metabolism. The ethanol extract of propolis suppressed prostaglandin and leukotriene generation by murine peritoneal macrophages in vitro and during zymosan-induced acute peritoneal inflammation in vivo. Dietary propolis significantly suppressed the lipoxygenase pathway of arachidonic acid metabolism during inflammation in vivo. CAPE was the most potent modulator of the arachidonic acid cascade among the propolis components examined.  相似文献   

5.
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.  相似文献   

6.
Ten phenolic compounds were examined for their effect on mung bean (Phaseolus aureus L.) hypocotyl growth and on respiration and coupling parameters of isolated mung bean hypocotyl mitochondria. Three compounds—tannic, gentisic, and p-coumaric acids—inhibited hypocotyl growth and when incubated with isolated hypocotyl mitochondria released respiratory control, inhibited respiration, and prevented substrate-supported Ca2+ and PO4 transport. Vanillic acid also inhibited hypocotyl growth and reduced mitochondrial Ca2+ uptake but did not affect respiration or respiratory control of isolated mitochondria. This is the first compound reported to selectively inhibit Ca2+ uptake in plant mitochondria. Two other phenolic compounds—α, 3,5-resorcylic and protocatechuic acids—showed no significant effect on hypocotyl growth and did not affect mitochondrial oxidative phosphorylation either separately or in various combinations. Four phenolic compounds—ferulic, caffeic, p-hydroxybenzoic, and syringic acids—showed a significant reduction in mung bean hypocotyl growth but did not inhibit any of the mitochondrial processes examined. The results show that phenolic compounds which alter respiration or coupling responses in isolated mitochondria also inhibit hypocotyl growth and may reflect a mechanism of action for these natural growth inhibitors.  相似文献   

7.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (~5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23–90%). Hydroxyl radicals were involved (32–85%), except with 1,2,4-benzenetriol. Superoxide participated (81–86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

8.
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.  相似文献   

9.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (approximately 5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23-90%). Hydroxyl radicals were involved (32-85%), except with 1,2,4-benzenetriol. Superoxide participated (81-86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

10.
Hydroxycinnamic acids (HCAs) are phenolic compounds present in dietary plants, which possess considerable antioxidant activity. In order to increase the lipophilicity of HCAs, with the aim of improving their cellular absorption and expansion of their use in lipophilic media, methyl, ethyl, propyl and butyl esters of caffeic acid and ferulic acid have been synthesized. All caffeate esters had a slightly lower DPPH IC(50) (13.5-14.5 μM) and higher ferric reducing antioxidant power (FRAP) values (1490-1588 mM quercetin/mole [mMQ/mole]) compared to caffeic acid (16.6 μM and 1398 mMQ/mole, respectively) in antioxidant assays. In contrast, ferulate esters were less active in DPPH (56.3-74.7 μM) and FRAP assays (193-262 mMQ/mole) compared to ferulic acid (44.6 μM and 324 mMQ/mole, respectively). Redox properties of HCAs were in line with their antioxidant capacities, so that compounds with higher antioxidant activities had lower oxidation potentials. Measurement of partition coefficients disclosed the higher lipophilicity of the esters compared to parent compounds. All esters of caffeic acid significantly inhibited hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay at 5 and 25 μM. However, caffeic acid, ferulic acid and ferulate esters were not able to protect the cells. In conclusion, these findings suggest that alkyl esterification of some HCAs augments their antioxidant properties as well as their lipophilicity and as a consequence, improves their cell protective activity against oxidative stress. These compounds could have useful applications in conditions where oxidative stress plays a pathogenic role.  相似文献   

11.
Propolis, a natural product derived from plant resins collected by the honeybees, has been used for thousands of years in folk medicine for several purposes. The extract that contains amino acids, phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes and caffeic acid, possesses several biological activities such as anti-inflammatory, immunostimulatory, anti-viral and anti-bacterial. In this study, we assay the effects of propolis extract on the production of key molecules released during chronic inflammatory events as nitric oxide (NO) and glycosaminoglycans (GAGs) in cultures of human cartilaginous tissues and chondrocytes, stimulated with interleukin-1beta (IL-1beta). We observed that this natural compound and its active principle, caffeic acid phenethyl ester (CAPE), were able to contrast the harmful effects of IL-1beta.Our data clearly demonstrated the protective action of propolis in cartilage alteration, that appears greater than that elicited by indomethacin, commonly employed in joint diseases.  相似文献   

12.
Following exposure of differentiated neuronal PC12 cells to either t-BHP, hydrogen peroxide (H2O2) or FeSO4 various kinds of reactive oxygen species (ROS) are generated leading to oxidative injury. The protective effects of two plant polyphenols, ellagic (EC) and chlorogenic acid (CGA), as well as of two metabolites, caffeic acid (CA) and ferulic acid (FA), were investigated in preincubation and coincubation experiments with respect to the following parameters: prevention of cell death, GSH depletion, lipid peroxidation and ROS formation.

The polyphenols more efficiently suppressed cytotoxicity and loss of GSH caused by peroxides than by iron, particularly in preincubation. Lipid peroxidation which increased much stronger in response to FeSO4 was counteracted completely by the polyphenols. In case of iron, however, only coincubation was effective. EA and CGA and the metabolites CA and FA showed excellent elimination of ROS induced by all stressors. These findings suggest that two dietary antioxidants, EA and CGA, may have protective properties against oxidative stress induced in CNS.  相似文献   

13.
The protective action of caffeic (CA) and syringic (SA) acids on the genotoxicity exercised by snake venoms was investigated in this study. Molecular interactions between phenolic acids and the enzyme succinate dehydrogenase were also explored. In the electrophoresis assay, SA did not inhibit the genotoxicity induced by the venom. However, CA partially inhibited DNA degradation. In the comet assay, SA and CA exerted an inhibitory effect on the venom‐induced fragmentation. Succinate dehydrogenase presented, in computational analyzes, favorable energies to the molecular bond to both the malonic acid and the phenolic compounds evaluated. In the enzymatic activity assays, SA inhibited succinate dehydrogenase and interfered in the interaction of malonic acid. Meanwhile, CA potentiated the inhibition exerted by the malonic acid. The results suggest transient interactions between toxins present in venoms and phenolic acids, mainly by hydrogen interactions, which corroborate with the data from previous works.  相似文献   

14.
Caffeic acid and some of its derivatives such as caffeic acid phenetyl ester (CAPE) and octyl caffeate are potent antioxidants which present important anti-inflammatory actions. The present study assessed the in vitro and in vivo effects of five caffeic acid derivatives (caffeic acid methyl, ethyl, butyl, octyl and benzyl esters) and compared their actions to those of CAPE. In the model of LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages, the pre-incubation of all derivatives inhibited nitrite accumulation on the supernatant of stimulated cells, with mean IC50 (μM) values of 21.0, 12.0, 8.4, 2.4, 10.7 and 4.80 for methyl, ethyl, butyl, octyl, benzyl and CAPE, respectively. The effects of caffeic acid derivatives seem to be related to the scavenging of NO, as the compounds prevented SNAP-derived nitrite accumulation and decreased iNOS expression. In addition, butyl, octyl and CAPE derivatives significantly inhibited LPS-induced iNOS expression in RAW 264.7 macrophages. Extending the in vitro results, we showed that the pre-treatment of mice with butyl, octyl and CAPE derivatives inhibited carrageenan-induced paw edema and prevented the increase in IL-1β levels in the mouse paw by 30, 24 and 36%, respectively. Butyl, octyl and CAPE derivatives also prevented carrageenan-induced neutrophil influx in the mouse paw by 28, 49 and 31%, respectively. Present results confirm and extend literature data, showing that caffeic acid derivatives exert in vitro and in vivo anti-inflammatory actions, being their actions mediated, at least in part by the scavenging of NO and their ability to modulate iNOS expression and probably that of other inflammatory mediators.  相似文献   

15.
In this paper, the preparation of new supported ionic liquids (SILs) composed of the N-methylimidazolium cation and the quinoline cation is described. They have been confirmed and evaluated by infrared spectroscopy, elemental analysis and thermogravimetric analysis. Six kinds of different SILs included SiO(2)·Im(+)·Cl(-), SiO(2)·Im(+)·BF(4)(-), SiO(2)·Im(+)·PF(6)(-), SiO(2)·Qu(+)·Cl(-), SiO(2)·Qu(+)·BF(4)(-) and SiO(2)·Qu(+)·PF(6)(-). The adsorption characteristics of ferulic acid (FA), caffeic acid (CA) and salicylic acid (SA) on SILs were investigated by static adsorption experiments. It was found that SiO(2)·Qu(+)·Cl(-) had excellent adsorption and desorption capacity to three tested phenolic compounds. The dynamic adsorption characteristics of FA, CA and SA on SiO(2)·Qu(+)·Cl(-) were also studied. The saturated adsorption capacity of FA, CA and SA using SiO(2)·Qu(+)·Cl(-) as adsorbent was 64.6 mg/g, 53.2 mg/g and 72.2 mg/g respectively. Using 70% ethanol as eluent, the saturated desorption efficiencies of FA, CA and SA were 97.2%, 90.3% and 96.5% respectively. Thus, SiO(2)·Qu(+)·Cl(-) had strong adsorption and separation capacity for FA, CA and SA.  相似文献   

16.
《Free radical research》2013,47(11):854-868
Abstract

Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome and refers to a spectrum of disorders ranging from steatosis to steatohepatitis, a disease stage characterized by inflammation, fibrosis, cell death and insulin resistance (IR). Due to its association with obesity and IR the impact of NAFLD is growing worldwide. Consistent with the role of mitochondria in fatty acid (FA) metabolism, impaired mitochondrial function is thought to contribute to NAFLD and IR. Indeed, mitochondrial dysfunction and impaired mitochondrial respiratory chain have been described in patients with non-alcoholic steatohepatitis and skeletal muscle of obese patients. However, recent data have provided evidence that pharmacological and genetic models of mitochondrial impairment with reduced electron transport stimulate insulin sensitivity and protect against diet-induced obesity, hepatosteatosis and IR. These beneficial metabolic effects of impaired mitochondrial oxidative phosphorylation may be related not only to the reduction of reactive oxygen species production that regulate insulin signaling but also to decreased mitochondrial FA overload that generate specific metabolites derived from incomplete FA oxidation (FAO) in the TCA cycle. In line with the Randle cycle, reduced mitochondrial FAO rates may alleviate the repression on glucose metabolism in obesity. In addition, the redox paradox in insulin signaling and the delicate mitochondrial antioxidant balance in steatohepatitis add another level of complexity to the role of mitochondria in NAFLD and IR. Thus, better understanding the role of mitochondria in FA metabolism and glucose homeostasis may provide novel strategies for the treatment of NAFLD and IR.  相似文献   

17.
Naturally occurring plant phenolics,p-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA) and gentisic acid (GA) (25–100 nmol/L) had protective effects on acridine orange (AO; 216 μmol/L)- and ofloxacin (3 μmol/L)-induced genotoxicity inSalmonella typhimurium. FA, GA and CA exhibited a significant concentration-dependent protective effect against the genotoxicity of AO and ofloxacin, with the exception of PA, which at all concentrations tested abolished the AO and ofloxacin genotoxicity. UV spectrophotometric measurements showed the interaction of PA, FA, GA and CA with AO but not with ofloxacin; this interaction is obviously responsible for the reduction of AO-inducedS. typhimurium mutagenicity. In the case of ofloxacin the antimutagenic effect of PA, FA, GA and CA is assumed to be a result of their ability to scavenge reactive oxygen species (ROS) produced by ofloxacin.  相似文献   

18.
Numerous in vitro studies attest to the enhanced ability of vitamin E succinate (TS), as compared with conventional vitamin E compounds such as unesterified d-alpha-tocopherol (T) and d-alpha-tocopheryl acetate (TA), to protect hepatocytes from toxic oxidative stress. In the present study we tested the hypothesis that this unique protective ability is related to an enhanced cellular accumulation of TS. The results of this study indicate, using both in vitro and in vivo model systems, that acute TS administration results in a rapid increase in T and TS content and antioxidant protection of hepatocytes and mitochondria. In contrast, conventional vitamin E compounds such as T and TA lack these same protective properties. We suggest that TS acts as a unique delivery system for T, rapidly accumulating in cellular and mitochondrial membranes and gradually releasing active T to prevent membrane oxidative damage. We propose that TS administration may prove useful for the prevention and treatment of oxidative stress-mediated diseases, especially those of mitochondrial origin.  相似文献   

19.
The primary objective of this study was to assess the efficacy of ferulic acid (FA), a phenolic antioxidant, in ameliorating oxidative stress in the testis and liver of diabetic pubertal rats. Male (6 wk old) rats were rendered diabetic by an acute dose (60 mg/kg body weight, intraperitoneal) of streptozotocin (STZ) and were given oral supplementation of FA (50 mg/kg body weight/d on alternate days) for 4 weeks. The protective efficacy of FA was assessed by measuring markers of oxidative stress in the testis and liver along with the effect of stress on lipid profile in serum/testis. Terminally, the testis (cytosol and mitochondria) of STZ-administered rats exhibited a marked elevation in the status of lipid peroxidation and enhanced reactive oxygen species (ROS) production compared to the non-diabetic controls. FA treatment completely normalized the oxidative impairments in the testis. Further, STZ-induced depletion of reduced glutathione (GSH) and elevated protein carbonyl content in the testis were restored to normalcy by FA treatment. The protective effects of FA were also discernible in the testis in terms of restoration of activities of various antioxidant enzymes in the diabetic rats. Furthermore, STZ-induced oxidative impairments in the liver were also abrogated significantly by FA treatment. STZ-induced perturbations in serum and testicular lipid profiles in the diabetic rats were also significantly attenuated by FA treatment. Collectively, these results indicate that oral supplementation of FA can significantly mitigate diabetes-associated oxidative impairments in the testis as well as in the liver and suggests the efficacy of FA as a complementary therapeutic agent in the management of diabetes-associated oxidative stress-mediated complications.  相似文献   

20.
Caffeic acid (CA) has demonstrated a strong intracellular antioxidant ability by scavenging ROS, contributing to the maintenance of cell membrane structural integrity and to reduce oxidative injuries in other cell components. Nevertheless, caffeic acid has limited usage, due to its hydrophilic character. In this work, the introduction of alkyl chains in the caffeic acid molecule by esterification (methyl - C1, ethyl - C2, butyl - C4, hexyl - C6, octyl - C8 and hexadecyl - C16), significantly increased its lipophilicity. All caffeates tested showed a much higher protective activity than caffeic acid against red blood cells (RBCs) AAPH-induced oxidative stress; this protection was heavily dependent on the length of the alkyl chain of the esters, and on their concentration. At 2.5 and 5 μM, the more lipophilic compounds (C8 and C16) showed a remarkable antioxidant activity, inhibiting hemolysis; probably, their better location within the membrane leads to a better antioxidative protection; however, at 50 μM, the more hydrophilic compounds (C1-C4) showed a better activity against hemolysis than the more lipophilic ones (C8-C16). At this higher concentration, the better interaction of the more lipophilic compounds with the membrane seems to cause changes in RBC membrane fluidity, disturbing membrane integrity. Our data show that the antioxidant activity of these compounds could play an important role for the protection of different tissues and organs, by protecting cell membranes from oxidative injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号