首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.  相似文献   

2.
Conflicting results have been reported regarding the effect of thiopental on aggregation and cytosolic calcium levels in platelets. The present study attempted to clarify these phenomena. Using platelet-rich plasma or washed suspensions, platelet aggregation, thromboxane (TX) B2 formation, arachidonic acid (AA) release, and cytosolic free calcium concentrations ([Ca2+]i) were measured in the presence or absence of thiopental (30-300 microM). Platelet activation was induced by adenosine diphosphate (ADP, 0.5-15 microM), epinephrine (0.1-20 microM) arachidonic acid (0.5-1.5 mM), or (+)-9,11-epithia-11,12-methano-TXA2 (STA2, 30-500 nM). Measurements of primary aggregation were performed in the presence of indomethacin (10 microM). Low concentrations of ADP and epinephrine, which did not induce secondary aggregation in a control study, induced strong secondary aggregation in the presence of thiopental (> or = 100 microM). Thiopental (> or = 100 microM) also increased the TXB2 formation induced by ADP and epinephrine. Thiopental (300 microM) increased ADP- and epinephrine-induced 3H-AA release. Thiopental (300 microM) also augmented the ADP- and epinephrine-induced increases in [Ca2+]i in the presence of indomethacin. Thiopental appears to enhance ADP- and epinephrine-induced secondary platelet aggregation by increasing AA release during primary aggregation, possibly by the activation of phospholipase A2.  相似文献   

3.
Y Okubo  Y Honma    S Suzuki 《Journal of bacteriology》1979,137(1):677-680
The mannans from Candida albicans strains NIH A-207 (serotype A), NIH B-792 (serotype B), and J-1012 (serotype C) were fractionated on a column of diethylaminoethyl-Sephadex into five subfractions containing different amounts of phosphate. Antibody-precipitating activities of the mannan subfractions of strains NIH A-207 and NIH B-792 were proportional to their phosphate content, while those of strain J-1012 did not show regularly proportional precipitin activity. A similar tendency was also observed in the cross-reaction between the mannan su,fractions of strains NIH A-207 and J-1012 and their heterologous antisera. The mannans of strain NIH B-792 showed lower cross-reactivities against antisera of strains NIH A-207 and NIH B-792, i.e., only two subfractions containing larger amounts of phosphate were able to react with these antisera.  相似文献   

4.
A newly synthesized 9 alpha-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26, 536, (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 microM. SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 microM. SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 microM. Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

5.
The effects of 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) on intracellular Ca2+ mobilization and cyclic AMP accumulation were investigated using rat brain capillary endothelial cells which express an endogenous P2Y1 receptor, human platelets which are known to express a P2Y1 receptor, and Jurkat cells stably transfected with the human P2Y1 receptor. In endothelial cells, BzATP was a competitive inhibitor of 2-methylthio ADP (2-MeSADP) and ADP induced [Ca2+]i responses (Ki = 4.7 microM) and reversed the inhibition by ADP of adenylyl cyclase (Ki = 13 microM). In human platelets, BzATP inhibited ADP-induced aggregation (Ki = 5 microM), mobilization of intracellular Ca2+ stores (Ki = 6.3 microM), and inhibition of adenylyl cyclase. In P2Y1-Jurkat cells, BzATP inhibited ADP and 2-MeSADP-induced [Ca2+]i responses (Ki = 2.5 microM). It was concluded that BzATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. In contrast to other P2Y1 receptor antagonists (A2P5P and A3P5P) which inhibit only ADP-induced Ca2+ mobilization, BzATP inhibits both the Ca2+- and the cAMP-dependent intracellular signaling pathways of ADP. These results provide further evidence that P2Y1 receptors contribute to platelet ADP responses.  相似文献   

6.
Reaction between 2,3-dichloronaphthoquinone (I) and ethyl cyanoacetate or diethyl malonate under different conditions gave the starting materials, 2-chloro-3-(alpha-cyano-alpha-ethoxycarbonyl-methyl)-1,4-naphthoquinone (A) or 2-chloro-3-(diethoxycarbonyl-methyl)-1,4-naphthoquinone (B). The 2-amino-3-ethoxycarbonyl-N-substituted-benzo[f]indole-4,9-dione derivatives [A-(1-10)] and 2-hydroxy-3-ethoxycarbonyl-N-substituted-benzo[f]indole-4,9-dione derivatives [B-(1-12)] were prepared from compounds A and B, respectively, by using various alkyl-, and arylamines. The cytotoxic activities of the prepared compounds were evaluated by SRB (Sulforhodamine B) assay against the following tumor cell lines: A459 (human lung), SK-OV-3 (human ovarian), SK-MEL-2 (human melanoma), XF498 (human CNS), and HCT 15 (human colon). Many of the derivatives mentioned exhibited more potent cytotoxic effects against SK-OV-3 and XF498 than etoposide. Significantly, 2-amino-3-ethoxycarbonyl-N-(3-methyl-phenyl)-benzo[f]indole-4,9-dione (A-8) showed potent activity against all tumor cell lines, and in particular, its cytotoxic effect against SK-OV-3 was much higher than doxorubicin.  相似文献   

7.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

8.
L Devi  A Goldstein 《Peptides》1986,7(1):87-90
A thiolprotease from rat brain membranes was shown to convert synthetic dynorphin B-29 (Dyn B-29, "leumorphin") to the tridecapeptide dynorphin B (Dyn B, "rimorphin"). This represents a "single-arginine cleavage" between threonine-13 and arginine-14 of the substrate. The dynorphin converting activity displayed typical Michaelis-Menten kinetics with an apparent Km for the substrate of 0.58 microM. Surprisingly, a synthetic peptide, Dyn B-29-(9-22), which contains the cleavage site, did not inhibit the activity. Dyn A inhibited the activity competitively with an apparent Ki of 3.7 microM. The converting activity was also inhibited by Dyn A-(6-17) but not by Dyn A-(8-17), suggesting a role of Arg6-Arg7 in the inhibition of converting activity. Bovine adrenal medulla Peptide E inhibited the converting activity substantially whereas metorphamide did not, suggesting the importance of COOH-terminal residues in recognition. Beta-Endorphin was an effective inhibitor of converting activity, and [alpha-N-acetyl]beta-endorphin was not, indicating a crucial role of the free NH2-terminus in recognition by the enzyme. ACTH inhibited the activity competitively with an apparent Ki of 39 nM. The converting activity was also inhibited substantially by ACTH-(1-13) but not by alpha-MSH, again indicating a requirement of the free NH2-terminus for recognition. The above results suggest that the converting enzyme recognizes peptides of the three known opioid gene families.  相似文献   

9.
High concentrations of adenosine-5'-diphosphate ADP are able to induce partial aggregation without shape change of P2Y(1) receptor-deficient mouse platelets through activation of the P2Y(12) receptor. In the present work we studied the transduction pathways selectively involved in this phenomenon. Flow cytometric analyses using R-phycoerythrin-conjugated JON/A antibody (JON/A-PE), an antibody which recognizes activated mouse alpha(IIb)beta(3) integrin, revealed a low level activation of alpha(IIb)beta(3) in P2Y(1) receptor-deficient platelets in response to 100 microM ADP or 1 microM 2MeS-ADP. Adrenaline induced no such activation but strongly potentiated the effect of ADP in a dose-dependent manner. Global phosphorylation of (32)P-labeled platelets showed that P2Y(12)-mediated aggregation was not accompanied by an increase in the phosphorylation of myosin light chain (P(20)) or pleckstrin (P(47)) and was not affected by the protein kinase C (PKC) inhibitor staurosporine. On the other hand, two unrelated phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, inhibited this aggregation. Our results indicate that (i) the P2Y(12) receptor is able to trigger a P2Y(1) receptor-independent inside-out signal leading to alpha(IIb)beta(3) integrin activation and platelet aggregation, (ii) ADP and adrenaline use different signaling pathways which synergize to activate the alpha(IIb)beta(3) integrin, and (iii) the transduction pathway triggered by the P2Y(12) receptor is independent of PKC but dependent on phosphoinositide 3-kinase.  相似文献   

10.
Certain epoxyeicosatrienoic acids (EETs) that were not cyclooxygenase substrates were effective cyclooxygenase inhibitors. Both (+/-)-14,15-cis-EET and (+/-)-8,9-cis-EET inhibited purified enzyme at concentrations from 1 to 50 microM; (+/-)-11,12-cis-EET was ineffective at concentrations below 100 microM. For the case of 14,15-cis-EET, only the (14R,15S)-stereoisomer was active. Other isomers including (14S,15R)-cis-EET, (14R,15R)-trans-EET, (14S,15S)-trans-EET, and the erythro and threo vicinal 14,15-diols were inactive. In addition to their effects on isolated enzyme preparations, cyclooxygenase activity in platelet suspensions, reflected by thromboxane B2 formation, was also inhibited by (14R,15S)-cis-EET and (+/-)-8,9-cis-EET but not by the other isomers. Thus potency and stereospecificity requirements were maintained for cyclooxygenase within intact platelets. Unlike the stereospecific inhibition of the cyclooxygenase enzyme, platelet aggregation induced by arachidonic acid was inhibited by all EET isomers at concentrations from 1 to 10 microM with no evident stereospecificity. Inhibition of aggregation was not uniformly associated with inhibition of thromboxane B2 formation; ordinarily, these two parameters correlate closely. This dissociation was not maintained for another biochemical process involved in platelet activation. For instance, there was a uniform correlation between inhibition of phosphorylation of a 40-kDa platelet protein and inhibition of aggregation. Our results suggest that effects of EET may originate from either stereospecific or nonspecific mechanisms. Definition of such mechanisms may be important to appreciate any physiological relevance of these substances.  相似文献   

11.
目的研究T淋巴细胞在肾缺血再灌注损伤(IRI)导致的急性肾损害中的作用。方法BALB/c小鼠和BALB/c裸小鼠各24只,分别随机分为A1-4组和B1-4组,每组6只。双肾蒂阻断45 min后恢复血流建立肾IRI模型,假手术对照组I、RI后24、48和72 h时检测Scr、尿蛋白定量及肾病理学,A组检测脾T细胞亚群;对比BALB/c小鼠和BALB/c裸小鼠的肾功能下降、组织学损害程度以及脾T淋巴细胞亚群变化。结果A2-4组和B2-4组均有Scr和尿蛋白定量明显升高(P<0.05),且A组损害程度明显重于B组(P<0.05);A2-4组出现典型的IRI组织损害表现(P<0.05),B2-4组无明显IRI组织损害(P>0.05);A2-3组脾CD3 T细胞百分比较A1组升高(P<0.05),而CD4 /CD8 比值无明显变化(P>0.05)。结论T淋巴细胞是小鼠肾IRI导致急性肾损害的重要病理生理学因素。  相似文献   

12.
The effect of shear rate on the adenosine diphosphate-induced aggregation of human platelets in Poiseuille flow was studied using the method described in part I (Bell, D.N., S. Spain, and H.L. Goldsmith. 1989. Biophys. J. 56:817-828). The rate and extent of aggregation in citrated platelet-rich plasma were measured over a range of mean transit time from 0.2 to 8.6 s and mean tube shear rate, G, from 41.9 to 1,920 s-1. At 0.2 microM ADP, changes in the single platelet concentration with time suggest that more than one type of platelet-platelet bond mediates platelet aggregation at physiological shear rates. At low G, a high initial rate of aggregation reflects the formation of a weak bond of high affinity, the strength of which diminishes with time. Here, the fraction of collisions yielding stable doublets, the collision efficiency, reached a maximum of 26%. The collision efficiency decreased with increasing G and was accompanied by a progressive delay in the onset of aggregation. However, the gradual expression of a more shear rate-resistant bond at high shear rates and long mean transit times produced a subsequent increase in collision efficiency and a corresponding increase in the rate of aggregation. Although the collision efficiencies here were less than 1%, the high collision frequencies were able to sustain a high rate of aggregation. At 0.2 microM ADP, aggregate size generally decreased with increasing G. At 1.0 microM ADP, aggregate size was still limited at high shear rates even though the rate of single platelet aggregation was much higher than at 0.2 microM ADP. Platelet aggregation was greater for female than for male donors, an effect related to differences in the hematocrit of donors before preparing platelet-rich plasma.  相似文献   

13.
Rapid-scan Fourier transform infrared (FTIR) difference spectroscopy was used to investigate the electron transfer reaction Q(A-)Q(B)-->Q(A)Q(B-) (k(AB)(1)) in mutant reaction centers of Rhodobacter sphaeroides, where Asp-L210 and/or Asp-M17 have been replaced with Asn. Mutation of both residues decreases drastically k(AB)(1)), attributed to slow proton transfer to Glu-L212, which becomes rate limiting for electron transfer to Q(B) [M.L. Paddock et al., Biochemistry 40 (2001) 6893]. In the double mutant, the FTIR difference spectrum recorded during the time window 4-29 ms following a flash showed peaks at 1670 (-), 1601 (-) and 1467 (+) cm(-1), characteristic of Q(A) reduction. The time evolution of the spectra shows reoxidation of Q(A-) and concomitant reduction of Q(B) with a kinetics of about 40 ms. In native reaction centers and in both single mutants, formation of Q(B-) occurs much faster than in the double mutant. Within the time resolution of the technique, protonation of Glu-L212, as characterized by an absorption increase at 1728 cm(-1) [E. Nabedryk et al., Biochemistry 34 (1995) 14722], was found to proceed with the same kinetics as reduction of Q(B) in all samples. These rapid-scan FTIR results support the model of proton uptake being rate limiting for the first electron transfer from Q(A-) to Q(B) and the identification of Glu-L212 as the main proton acceptor in the state Q(A)Q(B-).  相似文献   

14.
A series of novel polyhalogenated benzimidazoles have been prepared by exhaustive bromination of a variety of 2-substituted benzimidazoles. The efficacy of both new compounds and a number of their previously described cognates as inhibitors of casein kinases CK1, CK2 and G-CK was investigated. The type of N-1 alkyl substituent as well as introduction of a polyfluoroalkyl moiety at position 2 did not markedly influence the inhibitory efficacy toward CK2 of the respective 4,5,6,7-tetrabromobenzimidazole derivatives which conversely were almost ineffective toward CK1 and G-CK. However, 4,5,6,7-tetrabromobenzimidazoles substituted at position 2 with either chlorine, bromine or sulfur atom, while manifesting a still considerable inhibitory activity against CK2 (IC(50) in the 0.49-0.93 microM range) proved to be potentially powerful inhibitors also against CK1 (IC(50) in the 18.4-2.2 microM range).  相似文献   

15.
Previous studies have shown that adenosine agonists acting at A-2 receptors inhibit platelet aggregation. Since an increase in cytosolic Ca2+ concentration (delta [Ca2+]i) is closely associated with the time frame of platelet aggregation, we have examined the effect of adenosine receptor function on induced increases of [Ca2+]i by a potent platelet activator, platelet activating factor (PAF). We loaded washed platelets with Fura-2, then induced increases in [Ca2+]i with various concentrations of PAF, and then determined EC50 values (PAF concentration at half-maximal response) and values for maximal response of delta[Ca2+]i (max-delta[Ca2+]i). The EC50 for PAF-delta[Ca2+]i was 112 +/- 37 (SD) pM and the max-delta[Ca2+]i was 284 +/- 138 (SD) nM. Our results show that PAF-delta[Ca2+]i was inhibited in a non-competitive manner by the adenosine receptor agonist cyclohexyladenosine (CHA) with an IC50 of 14.9 microM. This inhibition was partially reversed by theophylline, an adenosine receptor antagonist, with an IC50 of 19 microM. Based on the results of these studies together with evidence from other research groups that platelets do not possess A-1 receptors, our results suggest that CHA inhibited PAF-delta[Ca2+]i in platelets through an activation of A-2 receptors.  相似文献   

16.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

17.
Cytochalasin B has been reported to inhibit fibrinogen binding and aggregation of rabbit platelets in response to ADP. The present study was designed to ascertain whether cytochalasins B and D inhibit aggregation by interfering with the exposure of fibrinogen receptors or more directly by inhibiting binding to available receptors. Aspirin-treated, washed, human platelets stimulated with ADP or chymotrypsin were used for these studies. Neither cytochalasin B nor D significantly inhibited the binding of fibrinogen to chymotrypsin-treated platelets when these agents were added to platelet suspensions before (16 +/- 8% (mean +/- SD) inhibition, N = 8), or after (15 +/- 10% inhibition, N = 13) chymotrypsin treatment, i.e., before or after fibrinogen receptor exposure. This apparent lack of cytoskeletal involvement was consistent with the observation that chymotrypsin-treated platelets were unable to retract reptilase-induced fibrin clots, an activity that was restored by adding ADP. In contrast, incubating platelets with either cytochalasin B or D for 30 min before or after stimulation with ADP decreased fibrinogen binding by 42 +/- 16% (N = 13) and 27 +/- 11% (N = 8), respectively, compared to DMSO-treated controls. Platelets stimulated with ADP and incubated with DMSO for 30 min, however, became refractory and aggregated poorly in response to a second dose of ADP. In comparison, platelets stimulated with ADP, but incubated with cytochalasin B or D, aggregated more extensively when stimulated by a second dose of ADP despite diminished fibrinogen binding. The data suggest (1) microfilament polymerization is important not only for the exposure of fibrinogen receptors by ADP, but also for preserving the ability of exposed receptors to bind fibrinogen, (2) exposure of fibrinogen receptors by chymotrypsin is not accompanied by significant cytoskeletal activation, and (3) cytochalasins may impart partial protective effects against the development of ADP-induced refractoriness.  相似文献   

18.
19.
ATP/ADP translocases are a hallmark of obligate intracellular pathogens related to chlamydiae and rickettsiae. These proteins catalyze the highly specific exchange of bacterial ADP against host ATP and thus allow bacteria to exploit their hosts' energy pool, a process also referred to as energy parasitism. The genome sequence of the obligate intracellular pathogen Lawsonia intracellularis (Deltaproteobacteria), responsible for one of the most economically important diseases in the swine industry worldwide, revealed the presence of a putative ATP/ADP translocase most similar to known ATP/ADP translocases of chlamydiae and rickettsiae (around 47% amino acid sequence identity). The gene coding for the putative ATP/ADP translocase of L. intracellularis (L. intracellularis nucleotide transporter 1 [NTT1(Li)]) was cloned and expressed in the heterologous host Escherichia coli. The transport properties of NTT1(Li) were determined by measuring the uptake of radioactively labeled substrates by E. coli. NTT1(Li) transported ATP in a counterexchange mode with ADP in a highly specific manner; the substrate affinities determined were 236.3 (+/- 36.5) microM for ATP and 275.2 (+/- 28.1) microM for ADP, identifying this protein as a functional ATP/ADP translocase. NTT1(Li) is the first ATP/ADP translocase from a bacterium not related to Chlamydiae or Rickettsiales, showing that energy parasitism by ATP/ADP translocases is more widespread than previously recognized. The occurrence of an ATP/ADP translocase in L. intracellularis is explained by a relatively recent horizontal gene transfer event with rickettsiae as donors.  相似文献   

20.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号