首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The caspase family of protease is speculated to have a crucial role in apoptosis. The effect of treatment with Idarubicin (IDA) and Medroxyprogesterone acetate (MPA), used alone or in combination, on the activation of Caspase-3 in canine Chronic Lymphatic Leukaemia (CLL) cells was investigated, in order to clarify the mechanism of chemo- and hormone-therapy mediated apoptosis. Caspase activity was determined by a quantitative fluorimetric assay. Apoptosis was monitored by propidium iodide (PI) and nucleosomes assay. Treatment of CLL cells for 24 h with MPA 5 microM did not significantly activate caspase-3 but its activity was increased almost 5-fold more with IDA 1 microM (P < 0.05) than control. Treatment of CLL cells with IDA 1 microM in equimolecular association with MPA was able to increase the activation of caspase-3 induced by IDA of the 61.2% (P < 0.05) in comparison with IDA alone. The activation of caspase-3 was confirmed evaluating apoptosis by PI and nucleosomes assay. Furthermore, both caspase-3 activation and apoptosis triggered by IDA alone or in combination with MPA were significantly inhibited by specific caspase-3 inhibitor AC-DEVD-CMK. These findings provide an explanation for IDA and MPA induced-apoptosis mechanism.  相似文献   

2.
3.
To investigate the effects of PA‐MSHA (Pseudomonas aeruginosa‐mannose sensitive hemagglutinin) on inhibiting proliferation of breast cancer cell lines and to explore its mechanisms of action in human breast cancer cells. MCF‐10A, MCF‐7, MDA‐MB‐468, and MDA‐MB‐231HM cells were treated with PA‐MSHA or PA (Heat‐killed P. aeruginosa) at different concentrations and different times. Changes of cell super‐microstructure were observed by transmission electron microscopy. Cell cycle distribution and apoptosis induced by PA‐MSHA were measured by flow cytometry (FCM) with PI staining, ANNEXIN V‐FITC staining and Hoechst33258 staining under fluorescence microscopy. Western blot was used to evaluate the expression level of apoptosis‐related molecules. A time‐dependent and concentration‐dependent cytotoxic effect of PA‐MSHA was observed in MDA‐MB‐468 and MDA‐MB‐231HM cells but not in MCF‐10A or MCF‐7 cells. The advent of PA‐MSHA changed cell morphology, that is to say, increases in autophagosomes, and vacuoles in the cytoplasm could also be observed. FCM with PI staining, ANNEXIN V‐FITC and Hoechst33258 staining showed that the different concentrations of PA‐MSHA could all induce the apoptosis and G0–G1 cell cycle arrest of breast cancer cells. Cleaved caspase 3, 8, 9, and Fas protein expression levels were strongly associated with an increase in apoptosis of the breast cancer cells. There was a direct relationship with increased concentrations of PA‐MSHA but not of PA. Completely different from PA, PA‐MSHA may impart antiproliferative effects against breast cancer cells by inducing apoptosis mediated by at least a death receptor‐related cell apoptosis signal pathway, and affecting the cell cycle regulation machinery. J. Cell. Biochem. 108: 195–206, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Stress-induced apoptosis: Toward a symmetry with receptor-mediated cell death   总被引:10,自引:0,他引:10  
Apoptosis is a form of programmed cell death executed by caspases activated along signalling pathways initiated by ligation of cell-surface death receptors ( extrinsic pathway ) or by perturbation of the mithocondrial membrane promoted by physical or chemical stress agents ( intrinsic pathway ). In metazoans, this evolutionary conserved, genetically controlled process has a role in a variety of physiological settings, as development, homeostasis of tissues and maintenance of the organism integrity. When deranged by impaired regulation or inappropriate activation apoptosis contributes to the pathogenesis of diseases as autoimmunity, cancer, restenosis, ischaemia, heart failure and neurodegenerative disorders. In this review we will present a survey of the stress-induced intrinsic, mithochondrial, pathway and, based on recent experimental data, we will propose a view compatible with an emergent conceptual symmetry between the two apoptogenic extrinsic and intrinsic pathways. Elements of symmetry present in both the apoptogenic signalling pathways include: early activation of initiator caspases (feed-forwarded by a direct or post-mitocondrial effector caspase-mediated amplification loop in some cell types) and mitochondrial membrane permeabilization with required release of antagonists of active caspase inhibitors (IAPs) in high-level IAPs-expressing cells and apoptosome-mediated amplification of the caspase cascade more or less needed in different cell types.  相似文献   

5.
Using short hairpin RNA against p53, transient ectopic expression of wild-type p53 or mutant p53 (R248W or R175H), and a p53- and p21-dependent luciferase reporter assay, we demonstrated that growth arrest and apoptosis of FaDu (human pharyngeal squamous cell carcinoma), Hep3B (hepatoma), and MG-63 (osteosarcoma) cells induced by aloe-emodin (AE) are p53-independent. Co-immunoprecipitation and small interfering RNA (siRNA) studies demonstrated that AE caused S-phase cell cycle arrest by inducing the formation of cyclin A-Cdk2-p21 complexes through extracellular signal-regulated kinase (ERK) activation. Ectopic expression of Bcl-X(L) and siRNA-mediated Bax attenuation significantly inhibited apoptosis induced by AE. Cyclosporin A or the caspase-8 inhibitor Z-IETD-FMK blocked AE-induced loss of mitochondrial membrane potential and prevented increases in reactive oxygen species and Ca(++). Z-IETD-FMK inhibited AE-induced apoptosis, Bax expression, Bid cleavage, translocation of tBid to mitochondria, ERK phosphorylation, caspase-9 activation, and the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G from mitochondria. The stability of the mRNAs encoding caspase-8 and -10-associated RING proteins (CARPs) 1 and 2 was affected by AE, whereas CARP1 or 2 overexpression inhibited caspase-8 activation and apoptosis induced by AE. Collectively, our data indicate AE induces caspase-8-mediated activation of mitochondrial death pathways by decreasing the stability of CARP mRNAs in a p53-independent manner.  相似文献   

6.
Background information. The nuclear gene hSUV3 (human SUV3) encodes an ATP‐dependent DNA/RNA helicase. In the yeast Saccharomyces cerevisiae the orthologous Suv3 protein is localized in mitochondria, and is a subunit of the degradosome complex which regulates RNA surveillance and turnover. In contrast, the functions of human SUV3 are not known to date. Results. In the present study, we show that a fraction of human SUV3 helicase is localized in the nucleus. Using small interfering RNA gene silencing in HeLa cells, we demonstrate that down‐regulation of hSUV3 results in cell cycle perturbations and in apoptosis, which is both AIF‐ and caspase‐dependent, and proceeds with the induction of p53. Conclusions. In addition to its mitochondrial localization, human SUV3 plays an important role in the nucleus and is probably involved in chromatin maintenance.  相似文献   

7.
8.
Colorectal cancer (CRC) is commonly known as one of the most prominent reasons for cancer-related death in China. Ras homolog enriched in brain (RHEB) and the mammalian target activity of rapamycin (mTOR) signaling pathway were found correlated with CRC, but their specific interaction in CRC was still to be investigated. Therefore, we explored whether RHEB gene silencing affected the cell proliferation, differentiation, and apoptosis by directly targeting the mTOR signaling pathway in cells previously harvested from CRC patients. A microarray analysis was subsequently conducted to investigate the relationship between RHEB and mTOR. Eighty-three adjacent normal tissues and CRC tissues were selected. Immunohistochemistry was carried out to detect the positive expression rates of RHEB and Ki-67 in the CRC tissues. Cells were then transfected with different siRNAs to investigate the potential effects RHEB would have on CRC progression. The expressions of RHEB, 4EBP1, ribosomal protein S6 kinase (p70S6K), proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (bcl-2), and bcl-2-associated X protein (bax) were determined and then the cell cycle, cell proliferation, and apoptotic rate were also measured. We identified RHEB and mTOR as upregulated genes in CRC. Cells treated with RHEB silencing showed a decreased extent of mTOR, p70S6K, 4EBP1 phosphorylation and expression of RHEB, Ki-67, mTOR, p70S6K, 4EBP1, bcl-2, and PCNA as well as decreased activity of cell proliferation and differentiation; although, the expression of bax was evidently higher. Collectively, our data propose the idea that RHEB gene silencing might repress cell proliferation and differentiation while accelerating apoptosis via inactivating the mTOR signaling pathway.  相似文献   

9.
10.
In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we compared cells sensitive (38C13) and resistant (EL4) to apoptosis induced by iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. We detected the activation of caspase-3 as well as the activation of caspase-9 in sensitive cells but not in resistant cells under iron deprivation. Iron deprivation led to the release of cytochrome c from mitochondria into the cytosol only in sensitive cells but it did not affect the cytosolic localization of Apaf-1 in both sensitive and resistant cells. The mitochondrial membrane potential (m) was dissipated within 24 h in sensitive cells due to iron deprivation. The antiapoptotic Bcl-2 protein was found to be associated with mitochondria in both sensitive and resistant cells and the association did not change under iron deprivation. On the other hand, under iron deprivation we detected translocation of the proapoptotic Bax protein from the cytosol to mitochondria in sensitive cells but not in resistant cells. Taken together, we suggest that iron deprivation induces apoptosis via mitochondrial changes concerning proapoptotic Bax translocation to mitochondria, collapse of the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and caspase-3.  相似文献   

11.
12.
Nitric oxide synthases are isoenzymes that catalyse the synthesis of nitric oxide (NO). NO plays both pathological and physiological roles depending on its rate of synthesis and concentration in cellular source and microenvironment. Apoptosis is an important biological factor in lymphomas. This study evaluates expression of inducible nitric oxide synthase (iNOS) in human lymphomas and its relation with apoptosis. This study comprised 46 cases of B-cell lymphoma. The lymphomas were classified as 3 mantle cell, 5 marginal zone, 4 follicular, 2 Burkitt, 25 diffuse large cell, 2 anaplastic large cell, 3 lymphoblastic, 2 lymphoplasmacytic according to WHO classification of lymphoid neoplasms. Hematoxylin eosin slides of the cases were reviewed and immunoperoxidase technique was performed iNOS and Caspase monoclonal antibodies to selected sections of each case. Antigen staining was carried out with iNOS and Caspase proteins and Ultravision Polyvalent, HRP-AEC kit (Neomarkers-Biogen USA). For the evaluation of iNOS and Caspase, tumor areas with a high density of expression were chosen. Positive stained cells were counted in 5 different areas at a magnification ×40 by an Olympus B × 51 microscope in each case. The iNOS and Caspase expressions were independently recorded by four pathologists and the results were averaged. All of the cases were positive for the iNOS and Caspase. But there is not a statistically important relation between lymphoma grade and iNOS activity. We could not find a correlation between iNOS and patients age. This study reveals the capacity of B-cell neoplasms to express iNOS in situ. In conclusion, our study revealed that there is a positive relation between iNOS expression and apoptosis (p $=$ 0.032 spearman correlation).  相似文献   

13.
Du L  Yu Y  Chen J  Liu Y  Xia Y  Chen Q  Liu X 《FEMS yeast research》2007,7(6):860-865
In recent years, it has been shown that yeast, a unicellular organism, undergoes apoptosis in response to various factors. Here we demonstrate that the highly effective anticancer agent arsenic induces apoptotic process in yeast cells. Reactive oxygen species (ROS) production was observed in the process. Moreover, mitochondrial membrane potential decreased after arsenic treatment. Resistance of the rho(0) mutant strain (lacking mtDNA) to arsenic provides further evidence that this death process involves mitochondria. In addition, hypersensitivity of Deltasod1 to arsenic suggests the critical role of ROS. Cell death and DNA fragmentation decreased in a Deltayca1 deletion mutant, indicating the participation of yeast caspase-1 protein in apoptosis. The implications of these findings for arsenic-induced apoptosis are discussed.  相似文献   

14.
15.
16.
17.
Swainsonine (1, 2, 8-trihyroxyindolizidine, SW), a natural alkaloid, has been reported to exhibit anti-cancer activity on several mouse models of human cancer and human cancers in vivo. However, the mechanisms of SW-mediated tumor regression are not clear. In this study, we investigated the effects of SW on several human lung cancer cell lines in vitro. The results showed that SW significantly inhibited these cells growth through induction of apoptosis in different extent in vitro. Further studies showed that SW treatment up-regulated Bax, down-regulated Bcl-2 expression, promoted Bax translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, which in turn caused the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), resulting in A549 cell apoptosis. However, the expression of Fas, Fas ligand (FasL) or caspase-8 activity did not appear significant changes in the process of SW-induced apoptosis. Moreover, SW treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activity in xenograft tumor cells, resulting in a significant decrease of tumor volume and tumor weight in the SW-treated xenograft mice groups in comparison to the control group. Taken together, this study demonstrated for the first time that SW inhibited A549 cancer cells growth through a mitochondria-mediated, caspase-dependent apoptotic pathway in vitro and in vivo.  相似文献   

18.
19.
Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC.  相似文献   

20.
Autophagy and apoptosis are both highly regulated biological processes that play essential roles in tissue homeostasis, development and diseases. Autophagy is also described as a mechanism of death pathways, however, the precise mechanism of how autophagy links to cell death remains to be fully understood. Beclin 1 is a dual regulator for both autophagy and apoptosis. In this study we found that Beclin 1 was a substrate of caspase-3 with two cleavage sites at positions 124 and 149, respectively. Furthermore, the autophagosome formation occurred, followed by the appearance of morphological hallmarks of apoptosis after staurosporine treatment. The cleavage products of Beclin 1 reduced autophagy and promoted apoptosis in HeLa cells and the cells in which Beclin 1 was stably knocked down by specific shRNA. In addition, the cleavage of Beclin 1 resulted in abrogating the interaction between Bcl-2 with Beclin 1, which could be blocked by z-VAD-fmk. Thus, our results suggest that the cleavage of Beclin 1 by caspase-3 may contribute to inactivate autophagy leading towards augmented apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号