首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The interactions of ferriprotoporphyrin IX with ligandin and aminoazo-dye-binding protein A result in absorption spectra in the Soret region characteristic of the ligand in its monomeric state. 2. Both proteins are able to bind ferrous as well as ferric haem. 3. Ferriprotoporphyrin IX is bound at a single site on both proteins. At pH7.0, I 0.16M, difference-spectrophotometric measurements gave association constants of 10(7) and 4 X 10(6) LITRE/MOL FOR LIGANDIN AND PROTEin A respectively. Under the same conditions fluorescence-quenching experiments gave an association constant of 2 X 10(7) litre/mol for ligandin. 4. Bilirubin, bromosulphophthalein and oesterone sulphate each compete with haem for binding by the two proteins. 5. Ferriprotoporphyrin IX bound to both ligandin and protein A is able to form co-ordination complexes with CN-, but not, to any measurable extent, with either N3- or F-. From these results it is suggested that binding by the two proteins may not involve the haem iron atom. 6. Both haem-protein complexes give rise to measurable extrinsic Cotton effects in the Soret region. 7. The formation and properties of the ligandin- and protein A-haem complexes are compared with those of haem-albumin, haemoglobin, myoglobin and other haemoproteins.  相似文献   

2.
1. Equilibrium dialysis studies have been made of the binding of a number of small molecules by rat ligandin. Direct measurements of binding together with competition experiments indicated that bromosulphophthalein, oestrone sulphate and dehydroepiandrosterone sulphate each bind at the same single primary binding site with association constants of 1.1 X 10(7), 6.6 X 10(5) and 2.6 X 10(5) 1/mol respectively at pH 7.0,IO.16M,4 degrees C. As well as bromosulphophthalein and dehydroepiandrosterone sulphate, a number of strucurally similar organic anions including 2-hydroxyoestradiol-glutathione oestrone glycyronide, N-methyl-4-aminoazobenzene-glutathione and several bile acids, were able to displace oestrone sulphate from ligandin in a manner consistent with competition at a single binding site. From these experiments association constants for the competing ligands were derived; these were inthe range 1 X 10(4)-1 X 10(6) 1/mol. 2. Ligandin was found to bind a number of compounds for which, because of their low aqueous solubilities relative to their binding affinities complete binding isotherms could bot be obtained. These included several steroids (but not cortisol), 20-methylcholanthrene, diethylstilboestrol, oleate and palmitate. Oestrone sulphate was able to compete with these ligands for binding and the results of the competition experiments were interpretable in terms of 1:1 competition at a single binding site. 3. In general the conjugation of non-polar ligands with sulphate or glutathione resulted in increased affinities, but such increases were relatively small (approximately 15% in therms of free energy) implying that the main driving force for the binding of both the conjugated and unconjugated species was the hydrophobic effect. This conclusion is borne out by the observations that both oestrone and its sulphate showed slight increases in affinity with increase in ionic strength, as would be expected for hydrophobic interactions. 4. As well as non-polar compounds and organic anions, ligandin was also found to bind sulphate and glucuronate to a measurable degree, and to interact quite strongly with glutathione. For the latter compound a single binding site was found with an association constant of 1 X 10(5) 1/mol. Glutathione was able to cause the dissociation of the ligandin-oestrone sulphate complex, but this effect was not explicable in terms of simple 1:1 competition. 5. Both oestrone and oestrone sulphare were bound most strongly at pH 6-7, the affinity of the protein for these ligands falling off quite sharply on either side of this maximum. 6. The affinities of ligandin for bromosulphophthalein, steroids and their conjugates, diethylstilboestrol and N,N-dimethyl-4-aminoazobenzene are similar in magnitude to those of serum albumin and aminoazodye-binding protein A (B. Ketterer, E. Tipping, J.F. Hackney and D. Beale, 1976).  相似文献   

3.
Circular dichroism methods were used to study the structure of rat ligandin and the binding of organic anions to the protein. Ligandin has a highly ordered secondary structure with about 40%alpha helix, 15% beta structure, and 45% random coil. Bilirubin binding occurred primarily at a single high affinity site on the protein. The binding constant for bilirubin (5 X 10-7 Mminus 1) was the highest among the ligands studied. The bilirubin-ligandin complex exhibited a well-defined circular dichroic spectrum with two major overlapping ellipticity bands of opposite sign in the bilirubin absorption region. This spectrum was virtually a mirror image of that of human or rat serum albumin-bilirubin complexes. Studies on the direct transfer of bilirubin from ligandin to rat serum albumin showed that sasociation constants of bilirubin-ligandin complexes were approximately tenfold less than those of the bilirubin-albumin system. Ligandin exhibited a broad specificity with respect to the typeof ligand bond. A series of organic anions inclucing dyes used clinically for liver function tests, fatty acids, hormones, heme derivatives, bile acids, and other ligands that were considered likely to interact with ligandin, were examined. Most induced ellipticity changes consistent with competitive displacement of bilirubin from ligandin and relative affinities of these compounds for ligandin were determined based on their effectiveness in desplacing the bilirubin. Some substances such as glutathione, conjugated sulfobromophthaleins and lithocholic acid bound to ligandin but induced anomalous spectral shifts, when added to ligandin-bilirubin complexes. Other compounds, including some that act as substrates for the glutathione transferase activity exhibited by ligandin, revealed no apparent competitive effects with respect to the bilitubin binding site.  相似文献   

4.
Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic method, based upon a difference of light absorption spectrum for free and bound bilirubin. The observations were supplemented with previous data from an independent technique, measurement of oxidation rates of free bilirubin with hydrogen peroxide and peroxidase. A continuous isotherm was obtained, showing binding of at least 4 mol bilirubin per mole albumin with the following stoichiometric binding constants, 1.11 X 10(8), 1.7 X 10(7), 8 X 10(5), and 4 X 10(4) M-1 at pH 8.2, ionic strength 0.15 M, 25 degrees C. The binding is anticooperative at all steps. A saturation level was not reached. Cobinding of bilirubin and laurate was studied, with up to 2 mol of each ligand per mole albumin, using the peroxidase method for determination of free equilibrium concentrations of bilirubin, and a dialysis rate technique for free laurate. The findings could be described in terms of a stoichiometric model. Heterotropic cooperativity was present among the first bilirubin and the first and second laurate molecules. More than two molecules of either ligand can be bound at the same time.  相似文献   

5.
1. To assess the possible involvement of ligandin and aminoazo-dye-binding protein A in intracellular transport it is necessary to know how their ligands, most of which are molecules with hydrophobic moieties, interact with cellular membranes. To obtain such information we have examined the interactions of 2-acetylaminofluorene, 4-dimethylaminoazobenzene, oestrone and testosterone with aqueous dispersions of egg phosphatidylcholine and egg phosphatidylcholine/cholesterol (1:1, molar ratio) by equilibrium dialysis and spectrophotometry. 2. At 25 degrees C and pH7.4, the partition coefficients for binding to phosphatidylcholine [expressed as (mol of ligand bound/mol of phosphatidylcholine)/unbound ligand concentration] were: for 2-acetylaminofluorene, 5.0x10(3) litre.mol(-1); for 4-dimethylaminoazobenzene, 2.1x10(4) litre.mol(-1); for oestrone, 3.1x10(3) litre.mol(-1); and for testosterone, 4.2x10(2) litre.mol(-1). In the ranges studied these values were independent of concentration. The results for the two steroids confirm those of Heap, Symons & Watkins [(1970) Biochim. Biophys. Acta218, 482-495]. 3. The introduction of cholesterol into the lipid bilayers caused large decreases in the partition coefficients of oestrone and testosterone, but had relatively little effect on the binding of 2-acetylaminofluorene and 4-dimethylaminoazobenzene. 4. By assuming that the interactions with egg phosphatidylcholine bilayers resemble those with the phospholipid components of mammalian intracellular membranes the phosphatidylcholine partition coefficients, together with data for binding to the intracellular proteins ligandin and aminoazo-dye-binding protein A, enable the subcellular distributions of the four compounds to be estimated. For the rat hepatocyte up to 98, 99, 89 and 58% of the total 2-acetylaminofluorene, 4-dimethylaminoazobenzene, oestrone and testosterone respectively may be membrane-bound.  相似文献   

6.
A label for the bilirubin binding sites of human serum albumin was synthesized by reacting 2 mol of Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate) with 1 mol of bilirubin. This yielded a water-soluble derivative in which both carboxyl groups of bilirubin were converted to reactive enol esters. Covalent labeling was achieved by reacting the label with human serum albumin under nitrogen at pH 9.4 and 20 degrees. Under the same conditions, no covalent binding to the monomers of several proteins could be demonstrated. The number of binding sites for bilirubin and the label were found to be the same, and competition experiments with bilirubin showed inhibition of covalent labeling. The absorption, fluorescence and CD spectra of the label in a complex with human serum albumin were similar to those of the bilirubin human serum albumin complex. However, following covalent attachment to the spectral properties were changed, indicating loss of conformational freedom of the chromophore. Labeling ratios were selected to result in the incorporation of less than 1 mol of label/mol of human serum albumin. Under these conditions, labeling is thought to occur primarily at the high affinity binding site.  相似文献   

7.
1. To assess the possible involvement of ligandin and aminoazo-dye-binding protein A in intracellular transport it is necessary to know how their ligands, most of which are molecules with hydrophobic moieties, interact with cellular membranes. To obtain such information we examined the interactions of bromosulphophthalein, oestrone sulphate, haem and bilirubin with aqueous dispersions of egg phosphatidylcholine and egg phosphatidylchone/cholesterol (1:1, molar ratio) by equilibrium dialysis and spectrophotometry. 2. In all four cases, saturation effects were observed. Values of Vmax (v = mol of compound bound/mol of lipid phosphorus) at 25 degrees C were: for bromosulphophthalein, approximately 0.1; for oestrone sulphate, approximately 0.25; for haem, approximately 0.25 (all at pH 7.4); and for bilirubin 0.1--0.2 (at pH 8.2). 3. Limiting values of v/c (c = unbound concentration) as v leads to 0 at 25 degrees C and pH 7.4 are: for bromosulphophthalein, 6.25 x 10(4) litre-mol-1; for oestrone sulphate, 7.8 x 10(2) litre-mol-1; for haem, 4.5 x 10(5) litre-mol-1; and for bilirubin, approximately 1.2 x 10(4) litre-mol-1. For haem the result depends on the assumption that only the monomeric form binds to the lipid. 4. The binding of each compound was decreased by cholesterol; bromosulphophthalein and oestrone sulphate were affected more than haem and bilirubin. 5. Bromosulphophthalein at saturating concentration decreased the limiting values of v/c of the other three compounds by approximately one order of magnitude. 6. By assuming that the interactions with egg phosphatidylcholine resemble those with the phospholipid components of mammalian intracellular membranes the binding data for phosphyatidylcholine, together with data for binding to the intracellular proteins ligandin and aminoazo-dye-binding protein A, enable the subcellular distributions of the four compounds to be estimated. For the rat hepatocyte up to 92, 51, 98 and 47% of the total bromosulphophthalein, oestrone sulphate, haem and bilirubin respectively may be membrane-bound.  相似文献   

8.
The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn2+, Co2+, and Ni2+ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K1. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k2. The rate constants k2 5.2 X 10(-2) sec-1 (Zn2+), 1.1 X 10(-3) sec-1 (Co2+), and 2 X 10(-4) sec-1 (Ni2+). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co2+ and Ni2+ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co2+ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni2+ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co2+ and - 163 +/- 9 kJ/mol K for Ni2+. Two protons are released during the binding of Zn2+ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.  相似文献   

9.
Equilibrium constants for the binding of cyanate to the ferric heme c octapeptide in 50% ethylene glycol, 50% aqueous buffer were measured spectrophotometrically. Equilibrium constants measured at several temperatures from -20 degrees C to 0 degrees C exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta Ho = -1.3 X 10(3) +/- 0.9 X 10(3) J/mol (-3.1 X 10(2) +/- 2 X 10(2) cal/mol), delta So = -3 +/- 3 J/K X mol (-0.6 +/- 0.8 cal/K X mol). The equilibrium constant for cyanate binding at 25 degrees C and pH 7.4 is 1.21 which is approximately 2 to 3 orders of magnitude lower than that observed for cyanate binding to methemoglobin and metmyoglobin. Krel, the ratio of the hemoprotein to model heme octapeptide binding constants, for NCO- is smaller than Krel for N3- suggesting that hydrogen bonding between the terminal ligand atoms and the distal histidine in hemoglobin and myoglobin does not contribute to the increased protein ligand stabilization observed for these anions relative to the model. A donor-acceptor interaction between the distal histidine and the electrophilic middle atoms of these bound ligands is proposed.  相似文献   

10.
Equilibrium constants for the binding of cyanide to the ferric heme c octapeptide in 20% ethylene glycol, 50% buffer were measured spectrophotometrically. The equilibrium constant for cyanide binding at 20 degrees C and pH 7.4 is 3.47 X 10(7), which is approximately 15-fold lower than that observed for cyanide binding to methemoglobin or metmyoglobin. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship, yielding thermodynamic values of delta H degrees = -79,000 J/mol (-18,900 cal/mol) and delta S degrees = J/degrees K mol (-30.1 e.u.). Comparison of the ratio of equilibrium constants for cyanide ligation to methemoglobin the heme octapeptide with the ratio of equilibrium constants for azide ligation to methemoglobin and the heme octapeptide suggests that cyanide binding to the methemoproteins is much smaller than expected by comparison to azide binding. The differences in the ratios, the thermodynamic values, and the preferred binding geometries suggest that CN- ligation, like CO ligation, is sterically hindered. A comparison of these ratios to similar ratios for CO, O2, and NO binding suggests that the Fe-CN bond angle is less subject to distortion than the Fe-CO bond and/or additional binding interactions contribute to N3- but not to CN-binding to the protein.  相似文献   

11.
The effect of changes in PCO2 upon induction of arrhythmias in cat papillary muscles was studied. The average norepinephrine (NE) dose necessary to produce spontaneous contractions in muscles stimulated at rates of 10/min was higher at high PCO2. Whereas 2 100 +/- 295 X 10(-8) mol/litre of NE was necessary during acidosis, only 824 +/- 295 X 10(-8) mol/litre was necessary to produce spontaneous contractions in alkalosis. In quiescent muscles, the necessary doses in acidosis and alkalosis were 2 209 +/- 531 X 10(-8) and 518 +/- 159 X 10(-8) mol/litre respectively. With isoproterenol 458 +/- 84 X 10(-8) mol/litre was necessary to reach the end point at high PCO2, whereas only 131 +/- 52 X 10(-8) mol/litre was required at low PCO2. The lower sensitivity to catecholamine-induced arrhythmias with hypercapnic acidosis does not appear to be related to the re-uptake of the neurotransmitter by the nerve ending since it is also present with isoproterenol.  相似文献   

12.
Albumin binding is a crucial determinant of bilirubin clearance in health and bilirubin toxicity in certain disease states. However, prior attempts to measure the affinity of albumin for bilirubin have yielded highly variable results, reflecting both differing conditions and the confounding influence of impurities. We therefore have devised a method based on serial ultrafiltration that successively removes impurities in [(14)C]bilirubin until a stable binding affinity is achieved, and then we used it to assess the effect of albumin concentration and buffer composition on binding. The apparent binding affinity of human serum albumin for [(14)C]bilirubin was strongly dependent on assay conditions, falling from (5.09 +/- 0.24) x 10(7) liters/mol at lower albumin concentrations (15 microm) to (0.54 +/- 0.05) x 10(7) liters/mol at higher albumin concentrations (300 microm). To determine whether radioactive impurities were responsible for this change, we estimated impurities in the stock bilirubin using a novel modeling approach and found them to be 0.11-0.13%. Formation of new impurities during the study and their affinity for albumin were also estimated. After correction for impurities, the binding affinity remained heavily dependent on the albumin concentration (range (5.37 +/- 0.26) x 10(7) liters/mol to (0.65 +/- 0.03) x 10(7) liters/mol). Affinities decreased by about half in the presence of chloride (50 mm). Thus, the affinity of human albumin for bilirubin is not constant, but varies with both albumin concentration and buffer composition. Binding may be considerably less avid at physiological albumin concentrations than previously believed.  相似文献   

13.
Determinations of iron content and dry-weight measurements on samples of Pseudomonas cytochrome oxidase were coupled with sodium dodecyl sulphate/polyacrylamide-gel-electrophoresis studies of both the native protein and covalently cross-linked oligomers in order to estimate the enzyme's molecular weight and spectral absorption coefficients. A value of epsilon(ox.) (410)=282x10(3) litre.mol(-1).cm(-1) was calculated for a dimeric protein molecule having a total molecular weight of 122000 (based on iron analysis). Steady-state kinetic observations of the enzyme-catalysed oxidation of reduced azurin by nitrite indicated a marked increase in enzyme inactivation as the pH was raised from 5.7 to 7.2. Since NO, a product of the nitrite reductase activity of Pseudomonas cytochrome oxidase, is known to bind to the enzyme, a study was undertaken to try to assess the potential of NO as a product inhibitor. Investigations showed that samples of the oxidized protein at pH values 4, 5 and 6 bound NO to both haem c and d(1) components, but oxidized enzyme samples at pH7 and above formed their reduced ligand-bound forms when placed under an atmosphere of the gas. Ascorbate-reduced enzyme samples at pH4, 5, 6 and 7 were also found to bind NO at both haem components, although at pH7 the rate of haem c binding was very slow. At pH8 and 9 only the ferrohaem d(1) bound NO. Titration experiments on the reduced protein over the pH range 5-7, with nitrite as a precursor of NO, showed that the haem d(1) had a much higher affinity than the haem c: experiments at pH5.2 and 5.9 with NO-equilibrated solutions revealed the same pattern of behaviour with the oxidized enzyme.  相似文献   

14.
A cytochrome c haem ligand, methionine-80, was photo-oxidized to methionine sulphoxide and the subsequent changes in redox properties and ligand binding were monitored kinetically. Isoelectric focusing of the product showed the presence of a single oxidized species, capable of binding CO when reduced. The binding of CO to the reduced protein was followed in stopped-flow experiments, which revealed the presence of two binding processes, at neutral pH, with rate constants of K+1 = 3.4 X 10(3)M-1-S-1 and k+2 = 5.80 X 10(2)M-1-S-1. When CO was photolytically dissociated from the reduced protein two recombination processes were observed with rates almost identical with those observed in the stopped-flow experiments (k+1 = 3.3 X 10(3)M-1-S-1 and k+2 = 6.0 X 10(2)M-1-S-1). These findings provide evidence of two reduced forms of the protein. The reduction of [methionine sulphoxide]cytochrome c by Cr2+ at neutral pH in stopped-flow experiments showed the presence of a single second-order reduction process (k = 7.2 X 10(3)M-1-S-1, activation energy = 44kJ/mol) and one first-order process. This protein was compared with some other chemically modified cytochromes.  相似文献   

15.
Ligandin (glutathione-s-transferase) and Z protein are soluble hepatocellular proteins that are involved in the transfer of organic ions, including bilirubin and some hormones and carcinogens from the plasma to the liver. The intracellular distribution of ligandin and Z protein was studied by applying the peroxidase-antiperoxidase procedure of L. A. Sternberger (Immunocytochemistry, Prentice Hall Inc., 1974) to paraffin sections and free-floating 10-micrometers frozen sections that were processed for both light and electron microscopy. Ligandin and Z protein were localized to the cytosol of hepatocytes in association with smooth endoplasmic reticulum (SER), but no reaction product was present between cisternae of rough endoplasmic reticulum. Penetration of reagents was enhanced in 10-micrometers frozen sections and the preservation of subcellular structures was equivalent to thicker, unfrozen sections.  相似文献   

16.
The binding of estradiol-17 beta (E2), diethylstilbestrol (DES), and polyene fatty acids, in particular arachidonate (C20:4), to alpha 1-fetoprotein (alpha-FP) and albumin purified from mouse embryo sera was studied using equilibrium dialysis and electrophoretic techniques. E2, arachidonate, and DES all bind to alpha-FP, but with decreasing strength. E2 is a high affinity, low capacity ligand (Ka approximately 0.8 X 10(8) M-1 and approximately 0.3 sites/mol of alpha-FP at 25 degrees C); arachidonate is a weaker ligand disposing of more sites (Ka approximately 0.3 X 10(7) M-1 and 4-5 sites/mol of alpha-FP); the binding of DES is of comparatively low affinity and capacity (Ka approximately 0.2 X 10(7) M-1 and n approximately 0.7/mol of alpha-FP). In spite of different structures and equilibrium parameters, E2, DES, and arachidonate are able to compete with each other for binding to the fetoprotein. The C22:4 and C22:6 fatty acids are also efficient concentration-dependent inhibitors of E2 or DES binding. Albumin binds the fatty acids and DES, but equilibrium parameters are different from those of alpha-FP. In particular, arachidonate is a better ligand for albumin, where it interacts with at least two classes of apparent sites (Ka1 approximately 0.3 X 10(8) M-1 and n1 approximately 1; Ka2 approximately 0.2 X 10(7) M-1 and n2 approximately 30). In contrast to alpha-FP, albumin virtually does not bind E2. Also, no competition could be demonstrated between DES and fatty acid ligands for binding to albumin. None of the studied interactions, with either albumin or alpha-FP, was modified even by high doses of bilirubin. The possible functions of the various binding activities present in fetal sera in the process of growth are discussed.  相似文献   

17.
Sn-protoporphyrin is a strong competitive inhibitor of heme oxygenase and a potential pharmacological agent for the treatment of neonatal hyperbilirubinemia. Little is otherwise known about the biochemistry of tin porphyrins. We have investigated aspects of the chemistry of tin-protoporphyrin in aqueous solution and of its interactions with heme-binding proteins other than heme oxygenase, specifically apomyoglobin and human serum albumin. In the pH region 7-10, Soret region absorption studies of unbound Sn-protoporphyrin demonstrate a pH-dependent monomer-dimer equilibrium (KD congruent to 10(6) M-1 at pH 7) with little higher aggregation. Dissociation of the dimer is relatively slow at neutral pH, permitting interaction of protein ligands with monomeric and dimeric species to be distinguished and providing insights into kinetic mechanisms of porphyrin binding by heme-binding proteins. In the present study, the kinetics of interaction of Sn-protoporphyrin with apomyoglobin are presented as novel evidence that this binding proceeds by an induced fit mechanism. Binding of Sn-protoporphyrin to both apomyoglobin and serum albumin is unexpectedly weak. Between pH 7 and 9, the apparent affinity of Sn-protoporphyrin for apomyoglobin is less than 1/200 that of heme and, at pH 9, is also significantly less than that of protoporphyrin. The apparent affinity of Sn-protoporphyrin for human serum albumin is less than 1/1000 that of heme and 1/30 to 1/100 that of protoporphyrin. Competition studies between heme and Sn-protoporphyrin and between bilirubin and Sn-protoporphyrin indicate that Sn-protoporphyrin distributes differently among porphyrin-binding sites on serum albumin than does heme and that it is also not an effective competitor with bilirubin for bilirubin-binding sites. These results argue that Sn-protoporphyrin should not significantly alter normal mechanisms for the binding and transport of heme or of preformed bilirubin by serum albumin. From a more general perspective, the results indicate potentially unusual binding site selectivity by tin chelates; possible origins of this selectivity are discussed.  相似文献   

18.
The rate constants and delta H degrees for the non-cooperative dimeric Busycon myoglobin are: oxygen, k' = 4.75 X 10(7) M-1 sec-1, k = 71 sec-1, and CO, l'= 3.46 X 10(5) M-1 sec-1, l = 0.0052 sec-1 at 20 degrees C, pH 7, delta H degrees = -3 kcal/mol for O2 and CO.2. Log-log plots of k vs K for oxygen and of l' vs L for CO binding for numerous non-cooperative hemoglobins and myoglobins point to a large steric influence of the protein on heme ligation reactions. Many of the proteins behave as "R" state for one ligand, but "T" for the other.  相似文献   

19.
H Wiesinger  H J Hinz 《Biochemistry》1984,23(21):4921-4928
The energetics of binding of the coenzyme pyridoxal 5'-phosphate (PLP) to both the apo beta 2 subunit and the apo alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli has been investigated as a function of pH and temperature by direct microcalorimetric methods. At 25 degrees C, pH 7.5, the binding process proceeds in the time range of minutes and shows a biphasic heat output which permits resolution of the overall reaction into different reaction steps. Binding studies on the coenzyme analogues pyridoxal (PAL), pyridoxine 5'-phosphate (PNP), and pyridoxine (POL) to the protein as well as a comparison of these results with data from studies on PLP binding to epsilon-aminocaproic acid have led to a deconvolution of the complex heat vs. time curves into fast endothermic contributions from electrostatic interaction and Schiff base formation and slow exothermic contributions from the interactions between PLP and the binding domain. The pH-independent, large negative change in heat capacity of about -9.1 kJ/(mol of beta 2 X K) when binding PLP to beta 2 is indicative of major structural changes resulting from complex formation. The much smaller value of delta Cp = -1.7 kJ/(mol of beta 2 X K) for binding of PLP to alpha 2 beta 2 clearly demonstrates the energetic linkage of protein-protein and protein-ligand interactions. Calorimetric titrations of the apo beta 2 subunit with PLP at 35 degrees C have shown that also at this temperature positive cooperativity between the two binding sites occurs. On the basis of these measurements a complete set of site-specific thermodynamic parameters has been established.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
M Mougel  B Ehresmann  C Ehresmann 《Biochemistry》1986,25(10):2756-2765
A sensitive membrane filter assay has been used to examine the kinetic and equilibrium properties of the interactions between Escherichia coli ribosomal protein S8 and 16S rRNA. In standard conditions (0 degrees C, pH 7.5, 20 mM Mg2+, 0.35 M KCl) the apparent association constant is 5 +/- 0.5 X 10(-7) M-1. The interaction is highly specific, and the kinetics of the reaction are consistent with the apparent association constant. Nevertheless, the rate of association is somewhat slower than that expected for a diffusion-controlled reaction, suggesting some steric constraint. The association is only slightly affected by temperature (delta H = -1.8 kcal/mol). The entropy change [delta S = +29 cal/(mol K)] is clearly the main driving force for the reaction. The salt dependence of Ka reveals that five ions are released upon binding at pH 7.5 and in the presence of 10 mM magnesium. The substitution of various anions for Cl- has an appreciable effect on the magnitude of Ka, following the order CH3COO- greater than Cl- greater than Br-, thus indicating the existence of anion binding site(s) on S8. An equal number of ions were released when Cl- was replaced by CH3COO-, but the absence of anion release upon binding cannot be excluded. On the other hand, the free energy of binding appears not to be exclusively electrostatic in nature. The effect of pH on both temperature and ionic strength dependence of Ka has been examined. It appears that protonation of residue(s) (with pK congruent to 9) increases the affinity via a generalized charge effect. On the other hand, deprotonation of some residue(s) with a pK congruent to 5-6 seems to be required for binding. Furthermore, the unique cysteine present in S8 was shown to be essential for binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号