共查询到20条相似文献,搜索用时 15 毫秒
1.
Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane. 相似文献
2.
Cadmium (CdSO4) was given ip on day 9 at 12 or 24 mumol/kg to pregnant CD-1 (non-inbred) mice. Fetuses showed malformations of the limbs, face, trunk, and tail. There was a statistically significant relationship between the dose of cadmium and the malformation rate. Cadmium (12 mumol/kg ip on day 9) was then given to mice of six inbred strains three of which (A/J, BALB/cJ, and C57BL6J) carry a gene cdm for resistance to cadmium-induced testicular damage, and three strains (AKR/J, CBA/J, and DBA/2J) which do not. Paradoxically, the three strains resistant to cadmium induced testicular damage were significantly more sensitive to its teratogenic effects than were the other three strains. In all inbred strains most malformations involved the limbs. All forelimb defects found in inbred or non-inbred cadmium treated mice were postaxial and indistinguishable from those produced by acetazolamide in mice. The remarkable similarity of the cadmium- and acetazolamide-induced forelimb malformations may be a reflection of the limited number of ways that a rodent forelimb can react to a teratogenic insult. The hindlimb defects were all preaxial. 相似文献
3.
Experiments were performed to characterize diazepam-insensitive [3H]Ro 15-4513 binding sites in discrete regions of rodent brain and cultured rat cerebellar granule cells. Scatchard analysis of [3H]Ro 15-4513 binding in the presence of 10 M diazepam revealed that diazepam-insensitive binding sites in the rat brain were most abundant in the cerebellum, followed by the hippocampus, cerebral cortex and olfactory bulb. Diazepam-insensitive sites represented approximately 80% of the total [3H]Ro 15-4513 binding sites in the membranes of cultured rat cerebellar granule cells. The Bmax values for total [3H]Ro 15-4513 and [35S]TBPS are almost identical, and 5–6 times larger than that for [3H]diazepam in this preparation. Although some annelated [1,5-a]benzodiazepine analogues such as Ro 15-4513, Ro 16-6028, flumazenil and Ro 15-3505, and an imidazothienodiazepine, Ro 19-4603, showed high affinity for cortical and cerebellar diazepam-insensitive sites, all the annelated benzodiazepine compounds tested showed higher affinity for cerebellar diazepaminsensitive sites than cortical ones. In contrast, a pyrazoloquinoline compound, CGS 8216, and -carboline analogues such as -carboline-3-carboxylate ethyl ester (-CCE) and -carboline-3-carboxylate methyl ester (-CCM) exhibited higher affinity for cortical than cerebellar sites. These results suggest that diazepam-insensitive sites are heterogeneous in brain areas with respect to ligand specificity. 相似文献
4.
Effect of an imidazobenzodiazepine, Ro15-4513, on the incoordination and hypothermia produced by ethanol and pentobarbital 总被引:1,自引:0,他引:1
The imidazobenzodiazepine, Ro15-4513, which is a partial inverse agonist at brain benzodiazepine receptors, reversed the incoordinating effect of ethanol in mice, as measured on an accelerating Rotarod. This effect was blocked by benzodiazepine receptor antagonists. In contrast, Ro15-4513 had no effect on ethanol-induced hypothermia in mice. However, Ro15-4513 reversed the hypothermic effect of pentobarbital, and, at a higher dose, also reversed the incoordinating effect of pentobarbital in mice. The data support the hypothesis that certain of the pharmacological effects of ethanol are mediated by actions at the GABA-benzodiazepine receptor-coupled chloride channel. 相似文献
5.
Mikko Uusi-Oukari 《Journal of neurochemistry》1992,59(2):568-574
Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H- imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate), a partial inverse agonist of central benzodiazepine receptors, binds to two distinct sites in the cerebellum. The binding to diazepam-sensitive (DZ-S) sites is displaced by different benzodiazepine receptor ligands, whereas the other site is insensitive to benzodiazepine agonists [diazepam-insensitive (DZ-IS)]. The binding of [3H]Ro 15-4513 was studied in pig cerebellar membranes and in receptors solubilized and purified from these. Micromolar concentrations of gamma-aminobutyric acid (GABA) decreased DZ-S binding at both 0 and 37 degrees C, whereas it had no effect on DZ-IS binding at 0 degrees C and was stimulatory at 37 degrees C. The pH profiles of [3H]Ro 15-4513 binding were quite similar in both binding sites in the pH range of 5.5-10.5 but differed at acidic pH values from those reported for flunitrazepam and Ro 15-1788 (flumazenil; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H- imidazol[1,5-a][1,4]benzodiazepine-3-carboxylate) binding in DZ-S sites, suggesting that [3H]Ro 15-4513 does not interact with a histidine residue apparently present in the binding site. Zn2+, Cu2+, Co2+, and Ni2+ enhanced the binding to DZ-S sites, and the first three mentioned also enhanced the binding to DZ-IS sites. [3H]Ro 15-4513 binding activity was solubilized by various detergents. All detergents tested were more efficient in solubilizing DZ-S binding activity. High ionic strength improved especially the solubility of DZ-IS binding activity.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol (2.5 g/kg, p.o.) induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 (2 mg/kg, i.p.) and FG 7142 (10 mg/kg, i.p.) both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or RO 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties. 相似文献
7.
Irreversible incorporation of [3H]flunitrazepam and [3H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [3H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [3H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [3H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [3H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [3H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex. 相似文献
8.
Mikko Uusi-Oukari 《Journal of neurochemistry》1992,59(2):560-567
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Ligands binding to the benzodiazepine-binding site in gamma-aminobutyric acid type A (GABA(A)) receptors may allosterically modulate function. Depending upon the ligand, the coupling can either be positive (flunitrazepam), negative (Ro15-4513), or neutral (flumazenil). Specific amino acid determinants of benzodiazepine binding affinity and/or allosteric coupling have been identified within GABA(A) receptor alpha and gamma subunits that localize the binding site at the subunit interface. Previous photolabeling studies with [(3)H]flunitrazepam identified a primary site of incorporation at alpha(1)His-102, whereas studies with [(3)H]Ro15-4513 suggested incorporation into the alpha(1) subunit at unidentified amino acids C-terminal to alpha(1)His-102. To determine the site(s) of photoincorporation by Ro15-4513, we affinity-purified ( approximately 200-fold) GABA(A) receptor from detergent extracts of bovine cortex, photolabeled it with [(3)H]Ro15-4513, and identified (3)H-labeled amino acids by N-terminal sequence analysis of subunit fragments generated by sequential digestions with a panel of proteases. The patterns of (3)H release seen after each digestion of the labeled fragments determined the number of amino acids between the cleavage site and labeled residue, and the use of sequential proteolytic fragmentation identified patterns of cleavage sites unique to the different alpha subunits. Based upon this radiochemical sequence analysis, [(3)H]Ro15-4513 was found to selectively label the homologous tyrosines alpha(1)Tyr-210, alpha(2)Tyr-209, and alpha(3)Tyr-234, in GABA(A) receptors containing those subunits. These results are discussed in terms of a homology model of the benzodiazepine-binding site based on the molluscan acetylcholine-binding protein structure. 相似文献
10.
Gisela Grecksch Lia Prado de Carvalho Patrice Venault Georges Chapouthier Jean Rossier 《Life sciences》1983,32(22):2579-2584
The effects of benzodiazepine antagonist Ro 15–1788, alone or with diazepam, were studied in mice on convulsions induced by pentylenetetrazol (PTZ). We found that Ro 15–1788 (1 mg/kg) was able to antagonize the anticonvulsive effects of diazepam (1 mg/kg), but also had, with submaximal doses of PTZ (65 mg/kg), its own anti-convulsive action. At very low doses (0.1 mg/kg), it even potentiated the anticonvulsive effects of diazepam (0.05 mg/kg). This dual action provides evidence for partial agonist properties of the antagonist Ro 15–1788. 相似文献
11.
Ethanol-induced sleeping time was determined in mice of both sexes at ages ranging from 3 weeks to just over 1 year. A progressive increase in sleeping time was seen in both sexes up to 26 weeks of age; no subsequent changes were observed, except for a modest decrease in the oldest female group. In the majority of age groups, sleeping time values were higher in females, but few statistically significant sex differences were found. 相似文献
12.
We evaluated a variety of biochemical parameters in Schistosoma mansoni isolated from mice up to 4 days after dosing with 15 mg/kg Ro 15-5458. While no drug effect could be demonstrated in the utilization of media glucose, glycogen content, gut pigment, or ATP levels of the parasites, a significant reduction (P less than or equal to 0.05) in parasite weight and protein content was observed. Possible drug actions that may contribute to the loss in parasite protein and perhaps ultimately result in parasite death have been investigated. We noted significant reduction in the incorporation of leucine and thymidine into acid-insoluble fractions of the parasites. The reduction in the incorporation of leucine into parasite proteins was nonspecific and preceded the effect of the drug on the uptake of the amino acid. Parasite and host liver RNA isolated after dosing were translated in vitro in a rabbit reticulocyte system. Drug-treated parasite mRNA, but not that of the host, was less effective than control mRNA in directing the incorporation of [35S]methionine. We propose a hypothesis that attributes the loss in protein content to a defect in the biosynthesis of parasite proteins as a result of a drug-induced reduction in the quantity of mRNA in the parasites This effect of Ro 15-5458 on the parasite may provide the basis for its schistosomicidal action. 相似文献
13.
Blood glucose and rectal temperatures were monitored in two strains of genetically obese mice (C57 BL/6J ob/ob) prior to and following intragastric ethanol administration in an attempt to relate the hypothermic response to ethanol to extracellular glucose concentration. In contrast to expectation, ethanol administration was typically associated with a hyperglycemia and a hypothermic response. In the ob/ob genotype, the hypothermic response was associated with pronounced hyperglycemia which was more emphatic in older animals. The data support the conclusion that ethanol-induced hypothermia is independent of blood glucose levels. In light of the known sensitivity of ob/ob mice to insulin, it is suggested further that the observed hypothermic response was not a function of the animals' ability to transport glucose into peripheral cells. The observed hyperglycemia of the obese animals was most likely stress-related. 相似文献
14.
Attenuating effect of diazepam on stress-induced increases in noradrenaline turnover in specific brain regions of rats: antagonism by Ro 15-1788 总被引:2,自引:0,他引:2
One-hour immobilization stress increased levels of the major metabolite of brain noradrenaline (NA), 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate (MHPG-SO4), in nine brain regions of rats. Diazepam at 5 mg/kg attenuated the stress-induced increases in MHPG-SO4 levels in the hypothalamus, amygdala, hippocampus, cerebral cortex and locus coeruleus (LC) region, but not in the thalamus, pons plus medulla oblongata excluding the LC region and basal ganglia. The attenuating effects of the drug on stress-induced increases in metabolite levels in the above regions were completely antagonized by pretreatment with Ro 15-1788 at 5 or 10 mg/kg, a potent and specific benzodiazepine (BDZ) receptor antagonist. When given alone, Ro 15-1788 did not affect the increases in MHPG-SO4 levels. Behavioral changes observed during immobilization stress such as vocalization and defecation, were also attenuated by diazepam at 5 mg/kg and this action of diazepam was antagonized by Ro 15-1788 at 10 mg/kg, which by itself had no effects on these behavioral measurements. These findings suggest: (1) that diazepam acts via BDZ receptors to attenuate stress-induced increases in NA turnover selectively in the hypothalamus, amygdala, hippocampus, cerebral cortex and LC region and (2) that this decreased noradrenergic activity might be closely related to relief of distress-evoked hyperemotionality, i.e., fear and/or anxiety in animals. 相似文献
15.
Adenosinergic agents such as adenosine, 2-chloro-adenosine, N6-cyclohexyladenosine produced dose-dependent protective effect against DMCM- and Ro 5-4864-induced convulsions and mortality. N6-cyclohexyladenosine produced most significant protective e ect against Ro 5-4864-induced convulsions whereas 2-chloroadenosine was more effective than N6-cyclohexyladenosine in antagonising DMCM-induced convulsions. Pretreatment of animals with subprotective doses of adenosine and dipyridamole significantly prolonged the latencies for the onset of myoclonic jerks and convulsions due to both DMCM and Ro 5-4864. DMCM and Ro 5-4864-induced mortality rate was also significantly reduced by pretreatment with subprotective doses of adenosine and dipyridamole. Similarly, subprotective doses of adenosine and diazepam further delayed the latencies for myoclonic jerks and convulsions due to DMCM and Ro 5-4864 treatment. The results suggest that adenosine and adenosine receptor agonists, 2-chloroadenosine and N6-cyclohexyladenosine are protective against both DMCM- and Ro 5-4864-induced convulsions. It is suggested that adenosinergic agents via activation of central A1 adenosine receptors may modulate the convulsant effects mediated by DMCM and Ro 5-4864. This study further supports the notion that adenosinergic mechanisms mediate neuroprotective e ects in the central nervous system. 相似文献
16.
17.
Masashi Katsura Seitaro Ohkuma Da-Zhi Chen Kinya Kuriyama 《Neurochemistry international》1994,24(6):541-547
Effect of long-term exposure to ethanol (EtOH) on the phosphatidylinositol 4,5-biphosphate (PIP2)-specific and cytosolic phospholipase C (PLC) activities in neuroblastoma x glioma hybrid (NG 108-15) cells and the brains from EtOH-inhaled mice were investigated. Long-term (2 days) exposure of NG 108-15 cells to EtOH induced significant decrease in PIP2-specific PLC activity dependent on concentration and duration of exposure, although the presence of EtOH in the enzyme assay system induced no alteration in PIP2-specific PLC activity. On the other hand, cytosolic PLC activity in NG 108-15 cells significantly increased by both the long-term exposure of the cells to EtOH and the addition of EtOH into the assay system. These changes in activities of both types of PLC in NG 108-15 cells observed after EtOH exposure recovered rapidly by the removal of EtOH. Moreover, the changes in activities of PIP2-specific and cytosolic PLC in the brain of EtOH-inhaled mice were similar to those found in NG 108-15 cells. These results indicate that EtOH inhibits the activity of PIP2-specific PLC and activates cytosolic PLC in the brain. These changes in cerebral PLC activities are suggested to involve in central action of EtOH and establishment of alcohol dependence. 相似文献
18.
Ro 15-1788 (10 mg/kg, ip) and CGS 8216 (10 mg/kg, ip) significantly reversed the inhibitory effect of diazepam (5 mg/kg, ip) on electrically induced head-turning in rats. Neither antagonist alone, at the dose level which blocked diazepam, had any intrinsic activity in this model. The specificity of the interaction between CGS 8216 and diazepam was further confirmed by the lack of antagonism by CGS 8216 of muscimol's inhibitory effect on head-turning. These results provide additional evidence that the inhibition of head-turning induced by diazepam is mediated via the benzodiazepine binding site. Furthermore, this model provides a functional expression of the interaction between the benzodiazepine recognition site, the chloride ionophore, and the GABA receptor complex. 相似文献
19.
We reported previously that in utero radiation-induced apoptosis in the predigital regions of embryonic limb buds was responsible for digital defects in mice. To investigate the possible involvement of the Trp53 gene, the present study was conducted using embryonic C57BL/6J mice with different Trp53 status. Susceptibility to radiation-induced apoptosis in the predigital regions and digital defects depended on both Trp53 status and the radiation dose; i.e., Trp53 wild-type (Trp53(+/+)) mice appeared to be the most sensitive, Trp53 heterozygous (Trp53(+/-)) mice were intermediate, and Trp53 knockout (Trp53(-/-)) mice were the most resistant. These results indicate that induction of apoptosis and digital defects by prenatal irradiation in the later period of organogenesis are mediated by the Trp53 gene. These findings suggest that the wild-type Trp53 gene may be an intrinsic genetic susceptibility factor that is responsible for certain congenital defects induced by prenatal irradiation. 相似文献
20.
Behavioral effects and benzodiazepine antagonist activity of Ro 15-1788 (flumazepil) in pigeons 总被引:1,自引:0,他引:1
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses. 相似文献