共查询到20条相似文献,搜索用时 15 毫秒
1.
Antti J. Väänänen Ron Liebkind Esko Kankuri Paivi Liesi Pekka Rauhala 《Free radical research》2013,47(3):271-282
Nitroxyl anion or its conjugate acid (NO-/HNO) and nitric oxide (NO) may both have pro-oxidative and cytotoxic properties. Superoxide dismutase (SOD) enzyme has been shown to convert reversibly HNO to NO. Mutations found in the SOD enzyme in some familial amyotrophic lateral sclerosis (ALS) patients affect redox properties of the SOD enzyme in a manner, which may affect the equilibrium between NO and HNO. Therefore, we studied the effects of HNO releasing compound, Angeli's salt (AS), on both motor and sensory functions after intrathecal administration in the lumbar spinal cord of a male rat. These functions were measured by rotarod, spontaneous activity, paw- and tail-flick tests. In addition, we compared the effect of AS to NO releasing papanonoate, old AS solution and sulphononoate in the motor performance test. The effect of intrathecal delivery of AS on the markers of the spinal cord injury and oxidative/nitrosative stress were further studied.Results: Freshly prepared AS (5 or 10?μmol), but not papanonoate, caused a marked decrease in the rotarod performance 3–7 days after the intrathecal administration. The peak motor deficiency was noted 3 days after AS (5?μmol) delivery. Old, degraded, AS solution and nitrous oxide releasing sulphononoate did not decrease motor performance in the rotarod test. AS did not affect the sensory stimulus evoked responses as measured by the paw-flick and tail-flick tests. Immunohistological examination revealed that AS caused injury related changes in the expression of glial fibrillary acidic protein (GFAP), fibroblast growth factor (FGF-2) and laminins in the spinal cord. Moreover, AS increased nitrotyrosine immunoreactivity in the spinal motor neurons.Therefore, we conclude that AS, but not NO releasing papanonoate, causes motor neuron injury but does not affect the function of sensory nerves in behavioural tests. 相似文献
2.
Miranda KM Yamada K Espey MG Thomas DD DeGraff W Mitchell JB Krishna MC Colton CA Wink DA 《Archives of biochemistry and biophysics》2002,401(2):134-144
The nitroxyl (HNO) donor Angeli's salt (Na(2)N(2)O(3); AS) is cytotoxic in vitro, inducing double strand DNA breaks and base oxidation, yet may have pharmacological application in the treatment of cardiovascular disease. The chemical profiles of AS and synthetic peroxynitrite (ONOO(-)) in aerobic solution were recently compared, and AS was found to form a distinct reactive intermediate. However, similarities in the chemical behavior of the reactive nitrogen oxide species (RNOS) were apparent under certain conditions. Buffer composition was found to have a significant and unexpected impact on the observed chemistry of RNOS, and varied buffer conditions were utilized to further distinguish the chemical profiles elicited by the RNOS donors AS and synthetic ONOO(-). Addition of HEPES to the assay buffer significantly quenched oxidation of dihydrorhodamine (DHR), hydroxylation of benzoic acid (BA), and DNA damage by both AS and ONOO(-), and oxidation and nitration of hydroxyphenylacetic acid by ONOO(-). Additionally, H(2)O(2) was produced in a concentration-dependent manner from the interaction of HEPES with both the donor intermediates. Interestingly, clonogenic survival was not affected by HEPES, indicating that H(2)O(2) is not a contributing factor to in vitro cytotoxicity of AS. Variation in RNOS reactivity was dramatic with significantly higher relative affinity for the AS intermediate toward DHR, BA, DNA, and HEPES and increased production of H(2)O(2). Further, AS reacted to a significantly greater extent with the unprotonated amine form of HEPES while the interaction of ONOO(-) with HEPES was pH-independent. Addition of bicarbonate only altered ONOO(-) chemistry. This study emphasizes the importance of buffer composition on chemical outcome and thus on interpretation and provides further evidence that ONOO(-) is not an intermediate formed between the reaction of O(2) and HNO produced by AS. 相似文献
3.
Väänänen AJ Moed M Tuominen RK Helkamaa TH Wiksten M Liesi P Chiueh CC Rauhala P 《Free radical research》2003,37(4):381-389
In this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO -) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 μM) released high amounts of hydroxylating species in a concentration dependent manner. AS also increased lipid peroxidation in brain homogenates at concentrations below 100 μM, while inhibiting it at 1000 μM concentration. The AS induced pro-oxidative effects were completely suppressed by copper (II), which converts nitroxyl anion to nitric oxide, as well as by a potent nitroxyl anion scavenger glutathione. Neurotoxicity towards dopaminergic neurons was tested in rat nigrostriatal dopaminergic system in vivo and by using primary mesencephalic dopaminergic neuronal cultures in vitro . Intranigral infusion of AS (0-400 nmol) caused neurotoxicity reflected as a dose dependent decrease of striatal dopamine seven days after treatment. The effect of the 100 nmol dose was more pronounced when measured 50 days after the infusion. Neurotoxicity was also confirmed as a decrease of tyrosine hydroxylase positive neurons in the substantia nigra. Neither sulphononoate, a close structural analog of AS, nor sodiumnitrite caused changes in striatal dopamine, thus reflecting lack of neurotoxicity. In primary dopaminergic neuronal cultures AS reduced [ 3 H] dopamine uptake with concentrations over 200 μM confirming neurotoxicity. In line with the quite low efficacy to increase lipid peroxidation in vitro , infusion of AS into substantia nigra did not cause increased formation of fluorescent products of lipid peroxidation. These results support the hypothesis that AS derived species oxidize critical thiol groups, rather than membrane lipids, potentially leading to protein oxidation/dysfunction and demonstrated neurotoxicity. These findings may have pathophysiological relevance in case of excess formation of nitroxyl anion. 相似文献
4.
Gulf War Syndrome is a multi-system disorder afflicting many veterans of Western armies in the 1990–1991 Gulf War. A number of those afflicted may show neurological deficits including various cognitive dysfunctions and motor neuron disease, the latter expression virtually indistinguishable from classical amyotrophic lateral sclerosis (ALS) except for the age of onset. This ALS “cluster” represents the second such ALS cluster described in the literature to date. Possible causes of GWS include several of the adjuvants in the anthrax vaccine and others. The most likely culprit appears to be aluminum hydroxide. In an initial series of experiments, we examined the potential toxicity of aluminum hydroxide in male, outbred CD-1 mice injected subcutaneously in two equivalent-to-human doses. After sacrifice, spinal cord and motor cortex samples were examined by immunohistochemistry. Aluminum-treated mice showed significantly increased apoptosis of motor neurons and increases in reactive astrocytes and microglial proliferation within the spinal cord and cortex. Morin stain detected the presence of aluminum in the cytoplasm of motor neurons with some neurons also testing positive for the presence of hyper-phosphorylated tau protein, a pathological hallmark of various neurological diseases, including Alzheimer’s disease and frontotemporal dementia. A second series of experiments was conducted on mice injected with six doses of aluminum hydroxide. Behavioural analyses in these mice revealed significant impairments in a number of motor functions as well as diminished spatial memory capacity. The demonstrated neurotoxicity of aluminum hydroxide and its relative ubiquity as an adjuvant suggest that greater scrutiny by the scientific community is warranted. 相似文献
5.
Induction of motor neuron apoptosis by free 3-nitro-L-tyrosine 总被引:1,自引:0,他引:1
Peluffo H Shacka JJ Ricart K Bisig CG Martìnez-Palma L Pritsch O Kamaid A Eiserich JP Crow JP Barbeito L Estèvez AG 《Journal of neurochemistry》2004,89(3):602-612
Peroxynitrite-dependent tyrosine nitration has been postulated to be involved in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Evidence supporting this supposition includes the appearance of both free and protein-linked 3-nitro-l-tyrosine (nitrotyrosine) in both sporadic and familial ALS, as well as of increased free nitrotyrosine levels in the spinal cord of transgenic mice expressing ALS-linked superoxide dismutase mutants at symptom onset. Here we demonstrate that incubation with clinically relevant concentrations of nitrotyrosine induced apoptosis in motor neurons cultured with trophic factors. Nitrotyrosine was bound to proteins, but it was not incorporated into alpha-tubulin, as previously demonstrated for other cell types. Neither inhibition of nitric oxide production nor scavenging of superoxide and peroxynitrite prevented increases in cell nitrotyrosine immunoreactivity or motor neuron death, suggesting that these effects are not due to the endogenous formation of reactive nitrogen species. In contrast, some populations of astrocytes incorporated nitrotyrosine into alpha-tubulin, but free nitrotyrosine had no effect on the viability and phenotype of astrocytes in culture, as evaluated by glial fibrillary acidic protein immunoreactivity, cell growth and morphology. Co-culture of motor neurons on astrocyte monolayers delayed, but did not prevent, nitrotyrosine-induced motor neuron death. These results suggest that free nitrotyrosine may play a role in the induction of motor neuron apoptosis in ALS. 相似文献
6.
Selective motor neuron death during amyotrophic lateral sclerosis (ALS) is a non-cell autonomous process in which non-neuronal
cells induce and/or contribute to the disease process. The non-neuronal cells that are clearly involved in the pathogenesis
of the disease are the surrounding astrocytes. Under normal conditions, astrocytes remove glutamate from the synaptic cleft
and release trophic factors. In addition, these cells determine the functional characteristics of motor neurons. Recent evidence
suggests that activation of astrocytes in a degenerative disease like ALS disturbs the crosstalk between astrocytes and motor
neurons, which could contribute to and/or accelerate selective motor neuron death. These new insights may contribute to the
development of therapeutic approaches to slow this fatal neurodegenerative disease. 相似文献
7.
Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons 总被引:1,自引:0,他引:1
The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5' fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5' enhancer. 相似文献
8.
H. Muyderman P. G. Hutson D. Matusica M.-L. Rogers R. A. Rush 《Neurochemical research》2009,34(10):1847-1856
Mutations in Cu/Zn superoxide dismutase are a cause of motor neuron death in about 20% of cases of familial amyotrophic lateral
sclerosis (ALS). Although the molecular mechanism of which these mutations induce motor neuron cell death is to a large extent
unknown, there is significant evidence that effects on mitochondrial function and development of oxidative stress make a major
contribution to the selective death of motor neurons in this disease. In this overview article we review the current understanding
of mutant SOD1-mediated motor neuron degeneration in ALS with focus on oxidative damage and mitochondrial dysfunction. We
also present novel information on the role of mitochondrial glutathione for the survival of NSC-34 cells stably transfected
with the human SOD1G93A mutation, putting forward the hypothesis that this antioxidant pool provides a potentially useful target for therapeutic
intervention.
Special issue article in Honor of Dr. Graham Johnston. 相似文献
9.
Inducible Nitric Oxide Synthase Up-Regulation in a Transgenic Mouse Model
of Familial Amyotrophic Lateral Sclerosis 总被引:6,自引:0,他引:6
Gabriele Almer Slobodanka Vukosavic Norma Romero & Serge Przedborski 《Journal of neurochemistry》1999,72(6):2415-2425
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS. 相似文献
10.
Roberta Gabbianelli Alberto Ferri Giuseppe Rotilio† & Maria Teresa Carrì† 《Journal of neurochemistry》1999,73(3):1175-1180
We have investigated the response to oxidative stress in a model system obtained by stable transfection of the human neuroblastoma cell line SH-SY5Y with plasmids directing constitutive expression of either wild-type human Cu,Zn superoxide dismutase or a mutant of this enzyme (H46R) associated with familial amyotrophic lateral sclerosis. We report that expression of mutant H46R Cu,Zn superoxide dismutase induces a selective increase in paraquat sensitivity that is reverted by addition of D-penicillamine. Furthermore, expression of this mutant enzyme affects the activity of the endogenous wild-type enzyme both in basal conditions and in copper overloading experiments. Our data indicate that aberrant metal chemistry of this mutant enzyme is the actual mediator of oxidative stress and that concurrent impairment of the activity of wild-type endogenous enzyme compromises the cell's ability to respond to oxidative stress. 相似文献
11.
Werner E.G. Müller † Francisco J. Romero ‡Sanja Perovic §Gabriela Pergande Periklis Pialoglou 《Journal of neurochemistry》1997,68(6):2371-2377
Abstract: Effective drugs are not available to protect against β-amyloid peptide (Aβ)-induced neurotoxicity. Cortical neurons from rat embryos were treated with the toxic fragment Aβ25-35 at 1 µ M in the presence or absence of flupirtine, a triaminopyridine, successfully applied clinically as a nonopiate analgesic drug. Five days later 1 µ M Aβ25-35 caused reduction of cell viability to 31.1%. Preincubation of cells with flupirtine (1 or 5 µg/ml) resulted in a significant increase of the percentage of viable cells (74.6 and 65.4%, respectively). During incubation with Aβ25-35 the neurons undergo apoptosis as determined by appearance of the characteristic stepladder-like DNA fragmentation pattern and by the TUNEL technique. Aβ25-35-induced DNA fragmentation could be abolished by preincubation of the cells with 1 µg/ml flupirtine. Incubation with Aβ25-35 reduces the intraneuronal level of GSH from 21.4 to 7.4 nmol/106 cells. This depletion could be partially prevented by preincubation of the cells with flupirtine. Thus, flupirtine may be adequate for the treatment of the neuronal loss in Alzheimer's disease (where Aβ accumulates in senile plaques) and probably other neurological diseases such as amyotrophic lateral sclerosis. 相似文献
12.
Retrograde axonal transport and motor neuron disease 总被引:2,自引:0,他引:2
Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS. 相似文献
13.
Rozen S Cudkowicz ME Bogdanov M Matson WR Kristal BS Beecher C Harrison S Vouros P Flarakos J Vigneau-Callahan K Matson TD Newhall KM Beal MF Brown RH Kaddurah-Daouk R 《Metabolomics : Official journal of the Metabolomic Society》2005,1(2):101-108
Motor neuron diseases (MND) are a heterogeneous group of disorders that includes amyotrophic lateral sclerosis (ALS) and result in death of motor neurons. These diseases may produce characteristic perturbations of the metabolome, the collection of small-molecules (metabolites) present in a cell, tissue, or organism. To test this hypothesis, we used high performance liquid chromatography followed by electrochemical detection to profile blood plasma from 28 patients with MND and 30 healthy controls. Of 317 metabolites, 50 were elevated in MND patients and more than 70 were decreased (p<0.05). Among the compounds elevated, 12 were associated with the drug Riluzole. In a subsequent study of 19 subjects with MND who were not taking Riluzole and 33 healthy control subjects, six compounds were significantly elevated in MND, while the number of compounds with decreased concentration was similar to study 1. Our data also revealed a distinctive signature of highly correlated metabolites in a set of four patients, three of whom had lower motor neuron (LMN) disease. In both datasets we were able to separate MND patients from controls using multivariate regression techniques. These results suggest that metabolomic studies can be used to ascertain metabolic signatures of disease in a non-invasive fashion. Elucidation of the structures of signature molecules in ALS and other forms of MND should provide insight into aberrant biochemical pathways and may provide diagnostic markers and targets for drug design.Electronic supplementary material Electronic supplementary material is available for this article at
and accessible for authorised users.
†S.R., M.E.C. and M.B. contributed equally to this work. W.R.M. and B.S.K. contributed equally to this work. S.R., M.B., W.R.M., B.S.K., C.B., S.H., P.V., M.F.B., and R.K-D. have financial interests in Metabolon Inc., a company engaged in metabolic profiling. ††Electronic supporting figures, tables and datasets are available at the Journal’s website.*To whom corrsepondence should be addressed.E-mail: kaddu001@mc.duke.eduCurrent address: Duke University Medical Center, Department of Psychiatry, P.O. Box 3950, Durham, NC 27710. 相似文献
14.
Kohsuke Kanekura Hiroaki Suzuki Sadakazu Aiso Masaaki Matsuoka 《Molecular neurobiology》2009,39(2):81-89
Several theories on the pathomechanism of amyotrophic lateral sclerosis (ALS) have been proposed: misfolded protein aggregates,
mitochondrial dysfunction, increased glutamate toxicity, increased oxidative stress, disturbance of intracellular trafficking,
and so on. In parallel, a number of drugs that have been developed to alleviate the putative key pathomechanism of ALS have
been under clinical trials. Unfortunately, however, almost all studies have finished unsuccessfully. This fact indicates that
the key ALS pathomechanism still remains a tough enigma. Recent studies with autopsied ALS patients and studies using mutant
SOD1 (mSOD1) transgenic mice have suggested that endoplasmic reticulum (ER) stress-related toxicity may be a relevant ALS
pathomechanism. Levels of ER stress-related proteins were upregulated in motor neurons in the spinal cords of ALS patients.
It was also shown that mSOD1, translocated to the ER, caused ER stress in neurons in the spinal cord of mSOD1 transgenic mice.
We recently reported that the newly identified ALS-causative gene, vesicle-associated membrane protein-associated protein
B (VAPB), plays a pivotal role in unfolded protein response (UPR), a physiological reaction against ER stress. The ALS-linked
P56S mutation in VAPB nullifies the function of VAPB, resulting in motoneuronal vulnerability to ER stress. In this review,
we summarize recent advances in research on the ALS pathomechanism especially addressing the putative involvement of ER stress
and UPR dysfunction. 相似文献
15.
16.
Motor neurons are a well-defined, although heterogeneous group of cells responsible for transmitting information from the
central nervous system to the locomotor system. Spinal motor neurons are specified by soluble factors produced by structures
adjacent to the primordial spinal cord, signaling through homeodomain proteins. Axonal pathfinding is regulated by cell-surface
receptors that interact with extracellular lignads and once synaptic connections have formed, the survival of the somatic
motor neuron is dependent on the provision of target-derived growth factors, although nontarget-derived factors, produced
by either astrocytes or Schwann cells, are also potentially implicated. Somatic motor neuron degeneration leads to profound
disability, and multiple pathogenetic mechanisms including aberrant growth factor signaling, abnormal neurofilament accumulation,
excitotoxicity, and autoimmunity have been postulated to be responsible. Even when specific deficits have been identified,
for example, mutations of the superoxide dismutase-1 gene in familial amyotrophic sclerosis and polyglutamine expansion of
the androgen receptor in spinal and bulbar muscular atrophy, the mechanisms by which somatic motor neuronal degeneration occurs
remain unclear. In order to treat motor system degeneration effectively, we will need to understand these mechanisms more
thoroughly. 相似文献
17.
Inheritance of the apolipoprotein E (apoE) epsilon4 allele increases the risk for Alzheimer's disease and may also influence the pathogenesis of other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). The influence of apoE genotype on disease susceptibility must ultimately be explained by the fact that apoE proteins differ in only two amino acids: apoE2 has two cysteine residues, apoE3 has one cysteine residue, and apoE4 has none. We previously reported increased protein modification by the lipid peroxidation product 4-hydroxynonenal (HNE), which covalently binds to proteins on cysteine residues, in human ALS lumbar spinal cord. We now report increased levels of HNE-modified apoE in lumbar spinal cord samples from mice expressing an ALS-linked mutation in Cu/Zn-superoxide dismutase relative to controls. Studies of interactions of pure apoE proteins with HNE showed that the isoforms differ in the amount of HNE they can bind, with the order E2 > E3 > E4. This correlated with the differential ability of apoE isoforms to protect against apoptosis induced by HNE in cultures of mouse spinal cord motor neurons and by the amyloid beta-peptide in cultures of rat hippocampal neurons. These data suggest that apoE plays a major role in detoxifying HNE, and the differential neuroprotective effect of its isoforms may help explain the relationship between apoE genotype and the susceptibility to neurodegenerative diseases. 相似文献
18.
目的研究miRNA-132和脑源性神经营养因子(brain derived neurotrophic factor,BDNF)在肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)转基因小鼠脊髓中的表达变化,探讨miRNA-132、BDNF在ALS发病中的作用。方法取SOD1-G93A ALS转基因鼠发病早期(95d)、中期(108d)和晚期(122d)脊髓组织,应用qRT-PCR及原位杂交(hybridization in situ, ISH)技术检测miRNA-132的表达及定位,应用qRT-PCR及Western blot技术检测BDNF在mRNA及蛋白水平变化,免疫荧光技术检测BDNF在脊髓中的表达及分布,以同窝野生型鼠作为对照。结果与野生型鼠比较,miRNA-132在ALS转基因鼠脊髓组织表达下降,miRNA-132阳性信号主要定位脊髓前角细胞胞体;在ALS转基因鼠脊髓组织BDNF mRNA及蛋白水平均增高,BDNF免疫阳性细胞主要表达于脊髓前角神经元,表达信号明显增强。结论 miRNA-132、BDNF可能在ALS发病过程中发挥了重要作用。 相似文献
19.
Yuzhou Wang Xiaodi Li Wenming Chen Zhanhang Wang Yan Xu Jingpan Luo 《Somatosensory & motor research》2017,34(1):15-20
Background: Although hand motor cortex (HMC) has been constantly used for identification of primary motor cortex in magnetic resonance spectroscopy (MRS) studies of amyotrophic lateral sclerosis (ALS), neurochemical profiles of HMC have never been assessed independently. As HMC has a constant location and the clinic–anatomic correlation between hand motor function and HMC has been established, we hypothesize that HMC may serve as a promising region of interest in diagnosing ALS.Patients and methods: Fourteen ALS patients and 14 age- and gender-matched healthy controls (HC) were recruited in this study. An optimized magnetic resonance spectroscopic imaging (MRSI) method was developed and for each subject bilateral HMC areas were scanned separately (two-dimensional multi-voxel MRSI, voxel size 0.56?cm3). N-acetyl aspartate (NAA)–creatine (Cr) ratio was measured from HMC and the adjacent postcentral gyrus.Results: Compared with HC, NAA/Cr ratios from HMC and the postcentral gyrus were significantly reduced in ALS. However, in each group the difference of NAA/Cr ratios between HMC and the postcentral gyrus was not significant. Limb predominance of HMC was not found in either ALS or HC. In ALS, there was a significant difference in NAA/Cr ratio between the most affected HMC and the less affected HMC. A positive relationship between NAA/Cr ratio of HMC and the severity of hand strength (assessed by finger tapping speed) was demonstrated.Conclusion: Neuronal dysfunction of HMC can differentiate ALS patients from HC when represented as reduced NAA/Cr ratio. Postcentral gyrus could not serve as normal internal reference tissue in diagnosing ALS. Asymmetrical NAA/Cr ratios from bilateral HMC may serve as a promising diagnostic biomarker of ALS at the individual level. 相似文献
20.
Superoxide Dismutase Concentration and Activity in Familial Amyotrophic Lateral Sclerosis 总被引:2,自引:0,他引:2
†Allen C. Bowling †Elizabeth E. Barkowski †D. McKenna-Yasek †‡Peter Sapp ‡H. Robert Horvitz M. Flint Beal † Robert H. Brown Jr. 《Journal of neurochemistry》1995,64(5):2366-2369
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS. 相似文献