共查询到20条相似文献,搜索用时 0 毫秒
1.
Aurora García‐Dorado 《Evolution; international journal of organic evolution》2017,71(5):1381-1389
I present analytical predictions for the equilibrium inbreeding load expected in a population under mutation, selection, and a regular mating system for any population size and for any magnitude and recessivity of the deleterious effects. Using this prediction, I deduce the relative fitness of mutant alleles with small effect on selfing to explore the situations where selfing or outcrossing are expected to evolve. The results obtained are in agreement with previous literature, showing that natural selection is expected to lead to stable equilibria where populations show either complete outcrossing or complete selfing, and that selfing is promoted by large deleterious mutation rates. I find that the evolution of selfing is favored by a large recessivity of deleterious effects, while the magnitude of homozygous deleterious effects only becomes relevant in relatively small populations. This result contradicts the standard assumption that purging in large populations will only promote selfing when homozygous deleterious effects are large, and implies that previously published results obtained assuming lethal mutations in large populations can be extrapolated to nonlethal alleles of similar recessivity. This conclusion and the general approach used in this analysis can be useful in the study of the evolution of mating systems. 相似文献
2.
Hans Peter Koelewijn Veikko Koski Outi Savolainen 《Evolution; international journal of organic evolution》1999,53(3):758-768
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. However, some self-fertilization should weaken the harmful effects of inbreeding by exposing deleterious alleles to selection. This study examines the maintenance of inbreeding depression in the predominantly outcrossing species Pinus sylvestris L. (Scots pine). Open-pollinated and self-fertilized progeny of 23 maternal trees, originating from a natural stand in southern Finland, were grown at two sites. We observed significant inbreeding depression in two of the four life stages measured. Inbreeding depression was largest for seed maturation (δ = 0.74), where seedset in open-pollinated strobili (70.9%) was about four times higher than in selfed strobili (18.3%). Inbreeding depression in postgermination survival (upto an age of 23 years) was also high (δ = 0.62–0.75). No significant differences in height (δ = 0.05) or flowering (δ = 0.14) of the trees after 23 years were observed. Cumulative inbreeding depression was high (δ = 0.90–0.94) and differed significantly among maternal families (range 0.45–1.00). The magnitude of inbreeding depression among the 23 maternal parents was not significantly correlated between early (seed maturation) and later (postgermination survival) life stages, suggesting that its genetic basis varies across the life cycle. Size differences among the progeny types diminished in time due to nonrandom size-specific mortality, causing a decrease in the inbreeding depression estimates for height over time. Our results indicate that Scots pine exhibits high levels of inbreeding depression during both early and later stages of the life cycle. It is argued that self-fertilization in Scots pine is inefficient in purging the genetic load caused by highly deleterious mutations because of the nearly complete loss of selfed individuals over time. This results in an effectively random mating outcrossing population. 相似文献
3.
Camille Gervais Diala Abu Awad Denis Roze Vincent Castric Sylvain Billiard 《Evolution; international journal of organic evolution》2014,68(11):3317-3324
Gametophytic self‐incompatibility (GSI) is a widespread genetic system, which enables hermaphroditic plants to avoid self‐fertilization and mating with close relatives. Inbreeding depression is thought to be the major force maintaining SI; however, inbreeding depression is a dynamical variable that depends in particular on the mating system. In this article we use multilocus, individual‐based simulations to examine the coevolution of SI and inbreeding depression within finite populations. We focus on the conditions for the maintenance of SI when self‐compatible (SC) mutants are introduced in the population by recurrent mutation, and compare simulation results with predictions from an analytical model treating inbreeding depression as a fixed parameter (thereby neglecting effects of purging within the SC subpopulation). In agreement with previous models, we observe that the maintenance of SI is associated with high inbreeding depression and is facilitated by high rates of self‐pollination. Purging of deleterious mutations by SC mutants has little effect on the spread of those mutants as long as most deleterious alleles have weak fitness effects: in this case, the genetic architecture of inbreeding depression has little effect on the maintenance of SI. By contrast, purging may greatly enhance the spread of SC mutants when deleterious alleles have strong fitness effects. 相似文献
4.
Christian Damgaard 《Evolution; international journal of organic evolution》1996,50(4):1425-1431
The fixation rates of selfing rate modifiers were found by stochastic simulation in an infinite site model, including effects of several deleterious alleles with variable effects, which were randomly distributed in the genome without assuming any pollen discounting. Previous results on the evolution of selfing obtained by more precise methods were in this study further validated, and it was concluded that the effect of genetic associations on the evolution of mating systems is small except in the case of full pollen discounting. Furthermore, attention was given to the uneven distribution of the genetic load in the population, and the accompanying large among-genome variation in fixation rates. This among-genome variation will be of significance for the evolution of mating systems. 相似文献
5.
Keely E. Brown John K. Kelly 《Evolution; international journal of organic evolution》2020,74(3):587-596
Most flowering plants are hermaphroditic and experience strong pressures to evolve self-pollination (automatic selection and reproductive assurance). Inbreeding depression (ID) can oppose selection for selfing, but it remains unclear if ID is typically strong enough to maintain outcrossing. To measure the full cost of sustained inbreeding on fitness, and its genomic basis, we planted highly homozygous, fully genome-sequenced inbred lines of yellow monkeyflower (Mimulus guttatus) in the field next to outbred plants from crosses between the same lines. The cost of full homozygosity is severe: 65% for survival and 86% for lifetime seed production. Accounting for the unmeasured effect of lethal and sterile mutations, we estimate that the average fitness of fully inbred genotypes is only 3–4% that of outbred competitors. The genome sequence data provide no indication of simple overdominance, but the number of rare alleles carried by a line, especially within rare allele clusters nonrandomly distributed across the genome, is a significant negative predictor of fitness measurements. These findings are consistent with a deleterious allele model for ID. High variance in rare allele load among lines and the genomic distribution of rare alleles both suggest that migration might be an important source of deleterious alleles to local populations. 相似文献
6.
Patrik Waldmann 《Evolutionary ecology》2001,15(2):117-127
Developmental instability and fluctuating asymmetry (FA) describe the inability of organisms to correct for random accidents under development and has become a major but controversial topic in evolutionary biology. Theoretical models predict that the level of FA should increase as a result of inbreeding, but empirical results are ambiguous. Moreover, the relationship between fitness and FA is still debated. In the current study, plants from a population of Scabiosa canescens, a locally rare species in southern Sweden, were raised under uniform growth conditions to examine the effects of one-generation of selfing and outcrossing on FA in flower morphology. The level of flower FA was significantly higher (p = 0.038) for inbred progeny than for offspring derived from outcross pollinations. Given that earlier studies of this species have found no negative relation between heterozygosity and FA, the results support the conclusion that expression of deleterious recessive alleles are responsible for the increase of FA. There was no correlation between FA and estimates of five fitness-related traits when estimated at the individual level. However, a companion study found significant inbreeding depression for all fitness traits, and a negative association between FA and fitness could therefore be asserted at the treatment level (inbred/outbred progeny). Hence, FA seems to be useful to predict inbreeding depression in S. canescens, but specific individuals with high fitness cannot be identified based on their FA levels. 相似文献
7.
Robin M. Bush Peter E. Smouse 《Evolution; international journal of organic evolution》1991,45(3):481-498
Reports of positive associations between allozymic heterozygosity and measures of fitness are routine, but it has not been possible to distinguish between the two preeminent explanations of the phenomenon, dominance and overdominance. We tested several of the assumptions of these hypotheses in our study of the relationship between electrophoretic genotype and three life history traits in loblolly pines (Pinus taeda L.). Traits examined included the survival and growth of selfed and outcrossed progeny of 45 maternal trees, and maternal fecundity, measured as the number of surviving progeny per mother tree. Inbreeding depression was severe; the relative fitness of the selfed progeny was only 8% that of the outcrossed progeny. We found a heterozygote fecundity advantage, which should have resulted in an excess of rare alleles in the progeny. Instead, there was evidence of severe survival selection against rare alleles in both heterozygous and homozygous forms. The deficit of rare alleles averaged 69 and 50% in the selfed and outcrossed progeny, respectively. The one allele in the sample that we should have suspected of being maintained by overdominance (a PGI2 mid-frequency allele) appeared to be overdominant for outcrossed height growth and probably for fecundity as well. Multiple-locus genotype explained very little of the variation in growth, however, and rather than seeing evidence for overdominance as a force in maintaining most of the observed polymorphism, we were left to explain, in the face of the severe survival selection, why the rare alleles were present at all. Projection of the stand into the future through computer simulation showed how balancing selection acting on differential growth, fecundity, and mortality among genotypes could, over the life of the stand, account for the maintenance of the rare alleles in the population. 相似文献
8.
Emily L. Weiser Catherine E. Grueber Euan S. Kennedy Ian G. Jamieson 《Evolution; international journal of organic evolution》2016,70(1):154-166
Inbreeding depression, the reduced fitness of offspring of related individuals, is a central theme in evolutionary biology. Inbreeding effects are influenced by the genetic makeup of a population, which is driven by any history of genetic bottlenecks and genetic drift. The Chatham Island black robin represents a case of extreme inbreeding following two severe population bottlenecks. We tested whether inbreeding measured by a 20‐year pedigree predicted variation in fitness among individuals, despite the high mean level of inbreeding and low genetic diversity in this species. We found that paternal and maternal inbreeding reduced fledgling survival and individual inbreeding reduced juvenile survival, indicating that inbreeding depression affects even this highly inbred population. Close inbreeding also reduced survival for fledglings with less‐inbred mothers, but unexpectedly improved survival for fledglings with highly inbred mothers. This counterintuitive interaction could not be explained by various potentially confounding variables. We propose a genetic mechanism, whereby a highly inbred chick with a highly inbred parent inherits a “proven” genotype and thus experiences a fitness advantage, which could explain the interaction. The positive and negative effects we found emphasize that continuing inbreeding can have important effects on individual fitness, even in populations that are already highly inbred. 相似文献
9.
Patrice David 《Evolution; international journal of organic evolution》1997,51(4):1049-1057
Houle (1994) showed that marker-associated heterosis due to general inbreeding depression could not be distinguished from direct overdominance at the marker locus by examining mean genotypic fitnesses, in the one-locus case. Indeed, both hypotheses equally fit the same regression model, referred to as the “adaptive distance model” (Smouse 1986). I here extend the analysis to several loci and to the relationship between marker genotype and variance in fitness. Several predictions differ between the overdominance and inbreeding hypotheses: (1) all locus-specific effects are equal under inbreeding, whereas they are not under overdominance; (2) the adaptive distance model has an increasingly low fit when the number of loci increases, under inbreeding, whereas it always explains the whole variance in fitness under overdominance; (3) a negative relationship is predicted between mean fitness and the variance in fitness, under inbreeding, which is not predicted under overdominance. Some statistical tests are derived from these predictions, that help to identify the genetic basis of heterosis. Simulations show that the power of these tests allows their application to real datasets. 相似文献
10.
Roff DA 《Evolution; international journal of organic evolution》2002,56(4):768-775
The two principal theories of the causal mechanism for inbreeding depression are the partial dominance hypothesis and the overdominance hypothesis. According to the first hypothesis, inbreeding increases the frequency of homozygous combinations of deleterious recessive alleles thereby decreasing fitness, whereas the overdominance hypothesis posits that inbreeding increases homozygosity and thus reduces the frequency of the superior heterozygotes. These two hypotheses make different predictions on the effect of crossing inbred lines: the overdominance hypothesis predicts that trait means will be restored to the outbred means, whereas the partial dominance hypothesis predicts that trait means will exceed those of the outbred population. I tested these predictions using seven inbred lines of the sand cricket, Gryllus firmus. Fourteen generations of brother-sister mating resulted in an inbreeding depression of 20-34% in four traits: nymphal weights at ages 14 days, 21 days, 28 days, and early fecundity. An incomplete diallel cross of these lines showed genetic variation among lines and an increase in all trait means above the outbred means, with three being significantly higher. These results provide support for the partial dominance hypothesis and are inconsistent with the overdominance hypothesis. 相似文献
11.
David E. Carr Michele R. Dudash 《Evolution; international journal of organic evolution》1997,51(6):1797-1807
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations. 相似文献
12.
Three primary hypotheses currently prevail for correlations between heterozygosity at a set of molecular markers and fitness in natural populations. First, multilocus heterozygosity-fitness correlations might result from selection acting directly on the scored loci, such as at particular allozyme loci. Second, significant levels of linkage disequilibrium, as in recently bottlenecked-and-expanded populations, might cause associations between the markers and fitness loci in the local chromosomal vicinity. Third, in partially inbred populations, heterozygosity at the markers might reflect variation in the inbreeding coefficient and might associate with fitness as a result of effects of homozygosity at genome-wide distributed loci. Despite years of research, the relative importance of these hypotheses remains unclear. The screening of heterozygosity at polymorphic DNA markers offers an opportunity to resolve this issue, and relevant empirical studies have now emerged. We provide an account of the recent progress on the subject, and give suggestions on how to distinguish between the three hypotheses in future studies. 相似文献
13.
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions. 相似文献
14.
Inbreeding and extinction: Effects of rate of inbreeding 总被引:5,自引:0,他引:5
David H. Reed Edwin H. Lowe David A. Briscoe Richard Frankham 《Conservation Genetics》2003,4(3):405-410
Deleterious alleles may be removed (purged) bynatural selection in populations undergoinginbreeding. However, there is controversyregarding the effectiveness of selection inreducing the risk of extinction due toinbreeding, especially in relation to the rateof inbreeding. We evaluated the effect of therate of inbreeding on reducing extinction risk,in populations of Drosophila melanogastermaintained using full-sib mating (160replicates), or at effective population sizes(N
e) of 10 (80) or 20 (80).Extinction rates in the populations maintainedusing full-sib mating occurred at lower levelsof inbreeding than in the larger populations,whereas the two larger populations did notdiffer significantly from each other.Inbreeding coefficients at 50% extinction were0.62, 0.79 and 0.77 for the full-sib (N
e = 2.6), N
e = 10 and N
e = 20 treatments, respectively. Populations of N
e = 20 that remained extant after 60 generations, showed inbreeding depression, with the mean fitness of these populations being only 45% of the outbredcontrols. There was considerable variationamong the 31 inbred populations in fitness, butnone of the N
e = 20 populations hadfitness that was higher than the outbredcontrol. We conclude that purging may slow therate of extinction slightly, but it cannot berelied on to eliminate the deleterious effectsof inbreeding. 相似文献
15.
We examined the effects of repeated inbreeding on fitness components of the long-lived perennial Succisa pratensis (Dipsacaceae). Plants from six populations differing in size were used to establish lines with expected inbreeding coefficients f of 0, 0.5 and 0.75. The effects of different inbreeding levels were measured for seed set, seed mass, percentage germination
and seedling relative growth rate. Seed set decreased following one generation of inbreeding and seedling growth rate decreased
after two generations of inbreeding. Our study indicated that the mutational load is difficult to purge and that continued
inbreeding tends to affect important traits in S. pratensis. Although the partial dominance hypothesis for inbreeding depression seems to account for the results, the overdominance
hypothesis cannot be ruled out completely. Overall, we conclude that the response of a long-lived plant, such as S. pratensis, to repeated inbreeding does not differ from that of other plant species with shorter life spans, surely because the mechanisms
that account for inbreeding depression are universal for all plant species. 相似文献
16.
The European royal dynasties of the Early Modern Age provide a useful framework for human
inbreeding research. In this article, consanguineous marriage, inbreeding depression and
the purging of deleterious alleles within a consanguineous population are investigated in
the Habsburgs, a royal dynasty with a long history of consanguinity over generations.
Genealogical information from a number of historical sources was used to compute kinship
and inbreeding coefficients for the Habsburgs. The marriages contracted by the Habsburgs
from 1450 to 1750 presented an extremely high mean kinship (0.0628±0.009), which
was the result of the matrimonial policy conducted by the dynasty to establish political
alliances through marriage. A strong inbreeding depression for both infant and child
survival was detected in the progeny of 71 Habsburg marriages in the period
1450–1800. The inbreeding load for child survival experienced a pronounced decrease
from 3.98±0.87 in the period 1450–1600 to 0.93±0.62 in the period
1600–1800, but temporal changes in the inbreeding depression for infant survival
were not detected. Such a reduction of inbreeding depression for child survival in a
relatively small number of generations could be caused by elimination of deleterious
alleles of a large effect according with predictions from purging models. The differential
purging of the infant and child inbreeding loads suggest that the genetic basis of
inbreeding depression was probably very different for infant and child survival in the
Habsburg lineage. Our findings provide empirical support that human inbreeding depression
for some fitness components might be purged by selection within consanguineous
populations. 相似文献
17.
18.
Winn AA Elle E Kalisz S Cheptou PO Eckert CG Goodwillie C Johnston MO Moeller DA Ree RH Sargent RD Vallejo-Marín M 《Evolution; international journal of organic evolution》2011,65(12):3339-3359
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them. 相似文献
19.
Correlations between heterozygosity and components of fitness have been investigated in natural populations for over 20 years. Positive correlations between a trait of interest and heterozygosity (usually measured at allozyme loci) are generally recognized as evidence of inbreeding depression. More recently, molecular markers such as microsatellites have been employed for the same purpose. A typical study might use around five to ten markers. In this paper we use a panel of 71 microsatellite loci to: (1) Compare the efficacy of heterozygosity and a related microsatellite‐specific variable, mean d2, in detecting inbreeding depression; (2) Examine the statistical power of heterozygosity to detect such associations. We performed our analyses in a wild population of red deer (Cervus elaphus) in which inbreeding depression in juvenile traits had previously been detected using a panel of nine markers. We conclude that heterozygosity‐based measures outperform mean d2‐based measures, but that power to detect heterozygosity‐fitness associations is nonetheless low when ten or fewer markers are typed. 相似文献
20.
Little is known about the breeding systems of perennial Lupinus species. We provide information about the breeding system of the perennial yellow bush lupine, Lupinus arboreus, specifically determining self-compatibility, outcrossing rate, and level of inbreeding depression. Flowers are self-compatible, but autonomous self-fertilization rarely occurs; thus selfed seed are a product of facilitated selfing. Based on four isozyme loci from 34 maternal progeny arrays of seeds we estimated an outcrossing rate of 0.78. However, when we accounted for differential maturation of selfed seeds, the outcrossing rate at fertilization was lower, ~0.64. Fitness and inbreeding depression of 11 selfed and outcrossed families were measured at four stages: seed maturation, seedling emergence, seedling survivorship, and growth at 12 wk. Cumulative inbreeding depression across all four life stages averaged 0.59, although variation existed between families for the magnitude of inbreeding depression. Inbreeding depression was not manifest uniformly across all four life stages. Outcrossed flowers produced twice as many seeds as selfed flowers, but the mean performance of selfed and outcrossed progeny was not different for emergence, seedling survivorship, and size at 12 wk. Counter to assumptions about this species, L. arboreus is both self-compatible and outcrosses ~78% of the time. 相似文献