首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica.  相似文献   

2.
Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic‐resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil‐in‐water nano‐emulsion. Nano‐emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano‐emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage‐loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18–20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage‐emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano‐emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti‐microbial wound management strategies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:932–944, 2014  相似文献   

3.
Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium. Various monocaprin-in-water emulsions were prepared which were stable after storage at room temperature for many months and which retained their microbicidal activity. A procedure was developed to manufacture up to 500 ml of 200 mM preconcentrated emulsions of monocaprin in tap water. The concentrates were clear and remained stable for at least 12 months. They were active against C. jejuni upon 160- to 200-fold dilution in tap water and caused a >6- to 7-log(10) reduction in viable bacterial count in 1 min at room temperature. The addition of 0.8% Tween 40 to the concentrates as an emulsifying agent did not change the microbicidal activity. Emulsions of monocaprin killed a variety of Campylobacter isolates from humans and poultry and also killed strains of Campylobacter coli and Campylobacter lari, indicating a broad anticampylobacter activity. Emulsions of 1.25 mM monocaprin in citrate-lactate buffer at pH 4 to 5 caused a >6- to 7-log(10) reduction in viable bacterial counts of Salmonella spp. and Escherichia coli in 10 min. C. jejuni was also more susceptible to monocaprin emulsions at low pH. The addition of 5 and 10 mM monocaprin emulsions to Campylobacter-spiked chicken feed significantly reduced the bacterial contamination. These results are discussed in view of the possible utilization of monocaprin emulsions in controlling the spread of food-borne bacteria from poultry to humans.  相似文献   

4.
Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium. Various monocaprin-in-water emulsions were prepared which were stable after storage at room temperature for many months and which retained their microbicidal activity. A procedure was developed to manufacture up to 500 ml of 200 mM preconcentrated emulsions of monocaprin in tap water. The concentrates were clear and remained stable for at least 12 months. They were active against C. jejuni upon 160- to 200-fold dilution in tap water and caused a >6- to 7-log10 reduction in viable bacterial count in 1 min at room temperature. The addition of 0.8% Tween 40 to the concentrates as an emulsifying agent did not change the microbicidal activity. Emulsions of monocaprin killed a variety of Campylobacter isolates from humans and poultry and also killed strains of Campylobacter coli and Campylobacter lari, indicating a broad anticampylobacter activity. Emulsions of 1.25 mM monocaprin in citrate-lactate buffer at pH 4 to 5 caused a >6- to 7-log10 reduction in viable bacterial counts of Salmonella spp. and Escherichia coli in 10 min. C. jejuni was also more susceptible to monocaprin emulsions at low pH. The addition of 5 and 10 mM monocaprin emulsions to Campylobacter-spiked chicken feed significantly reduced the bacterial contamination. These results are discussed in view of the possible utilization of monocaprin emulsions in controlling the spread of food-borne bacteria from poultry to humans.  相似文献   

5.
P.A.GUNNING, A.R.KIRBY, M.L.PARKER, A.P.GUNNING AND V.J.MORRIS. 1996. Both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have been used to visualize the morphology of Pseudomonas putida bacterial colonies isolated from model oil-in-water emulsions. A new method has been developed for growing flat homogeneous bacterial biofilms at planar oil-water interfaces. A marked increase in resolution has been achieved when these flat bacterial biofilms are imaged by both SEM and AFM methods. On flat bacterial biofilms AFM offers superior resolution with minimal sample preparation. High resolution DC contact mode AFM studies of the bacterial surfaces have revealed surface features comparable in size to large proteins. AC non-contact AFM methods have been used to image bacterial flagella trapped in the biofilm.  相似文献   

6.
Neutral cellulose nanocrystals dispersed in water were shown in a previous work to stabilize oil/water interfaces and produce Pickering emulsions with outstanding stability, whereas sulfated nanocrystals obtained from cotton did not show interfacial properties. To develop a better understanding of the stabilization mechanism, amphiphilic properties of the nanocrystals were modulated by tuning the surface charge density to investigate emulsifying capability on two sources of cellulose: cotton linters (CCN) and bacterial cellulose (BCN). This charge adjustment made it possible to determine the conditions where a low surface charge density, below 0.03 e/nm(2), remains compatible with emulsification, as well as when assisted by charge screening regardless of the source. This study discusses this ability to stabilize oil-in-water emulsions for cellulose nanocrystals varying in crystalline allomorph, morphology, and hydrolysis processes related to the amphiphilic character of nonhydrophobized cellulose nanocrystal.  相似文献   

7.
Mild steel and stainless steel samples were assayed in laboratory experiments against two different microbial strains isolated from cutting-oil emulsions: one strain of Pseudomonas fluorescens and a sulphate-reducing bacterium. The relationship between the corrosive attack and the formation of bacterial biofilms was assessed in each case by using electrochemical experiments complemented with scanning electron microscopical observation of the samples.  相似文献   

8.
The Millipore filter unit has been advocated as a means of reducing the chance of bacteria entering the circulation during intravenous infusion. In a prospective study no significant reduction was obtained in the incidence of thrombophlebitis or in the bacterial contamination of cannulae. The unit was inconvenient to use and in-vitro and in-vivo studies showed reduced flow rates and frequent episodes of filter blockage. Its use was further restricted by the fact that blood and fat emulsions would not pass through it.  相似文献   

9.
Fifty-seven bacterial strains were isolated from PAH-contaminated soils using PAH-amended minimal medium. The isolates were screened for their production of biosurfactants and bioemulsifiers when grown in liquid media containing selected PAHs. The results suggest that many, but not all, of the isolates are able to produce biosurfactants or bioemulsifiers under the experimental conditions. The majority of the strains isolated on phenanthrene, pyrene, and fluoranthene were better emulsifiers than surface tension reducers and the stability of the formed emulsions was in general high. The strains isolated on anthracene were in general better in lowering the surface tension than in forming emulsions. In all strains, reduction of surface tension and emulsion formation did not correlate. However, in the majority of strains the two factors were associated with the bacterial cell surfaces, rather than the culture supernatants. Nevertheless, supernatants from selected surfactant-producing anthracene isolates increased the aqueous solubility of anthracene. Although a significant potential for surfactant and emulsifier production in the microbiota of the PAH-contaminated soils was found in this study, the ability of individual strains to mineralize PAHs did not coincide with production of surface-active compounds.  相似文献   

10.
Bacteria able to produce biological emulsifiers were isolated from different environments using different isolation media with the aim of discovering the widest diversity. The phylogenetic diversity of the isolates was evaluated by 16S rRNA gene analysis. Among 190 isolated strains, 127 released extracellular emulsifiers able to stabilize oil-water emulsions when grown on low-cost substrates. Among these, the 35 isolates that showed the highest emulsifier production on different substrates were found to belong to 16 different bacterial genera. Overall, this is the first systematic study of the diversity of bioemulsifier-producing bacteria and of their ability to produce bioemulsifiers on low-cost substrates.  相似文献   

11.
Nocardia amarae grown in a liquid medium induced coalescence of emulsions which differed in type, composition of the organic phase, and structure of stabilizing emulsifiers. De-emulsifying activity varied with the type of growth medium, culture age, and postharvest treatment. Based on extraction and degradation studies, it was concluded that de-emulsifying properties are due to the bacterial cell surface. Thus, bacteria may provide a new source of de-emulsifying agents.  相似文献   

12.
It has previously been established that several glycopeptides of peptidoglycan origin are formed as a result of processing of Bacillus subtilis cell walls by the macrophage-like cell line RAW264. Although the formation of these glycopeptides could account for the humoral immune responses characteristic of bacterial peptidoglycans, their formation does not account for the cellular-mediated immune responses observed for water-in-oil emulsions of peptidoglycan or for lipophilic derivatives of glycopeptide fragments thereof. Therefore, the processing of peptidoglycan by macrophages was reexamined to establish whether the lipophilic derivative of any peptidoglycan-derived glycopeptide was formed. The experiments were performed by incubating B. subtilis cell walls radiolabeled in muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid residues in the presence of the macrophage-like cell line RAW264. The crude lipid fraction derived from the macrophages was further fractionated and analyzed, revealing the presence of two lipophilic glycopeptides that contained glucosamine, muramic acid, and alanine of bacterial origin.  相似文献   

13.
Omega-3-rich (n-3) triglycerides (TG) are increasingly recognized as having modulating roles in many physiological and pathological conditions. We questioned whether the catabolism of lipid emulsions would be changed after enrichment with fish oil (n-3) TG as compared to enrichment with omega-6-rich soy oil (n-6) TG. Phospholipid-stabilized emulsions of n-3 TG and n-6 TG were labeled with [(3)H]cholesteryl oleoyl ether and administered by bolus injection to wild-type (WT) mice, mice lacking the low-density lipoprotein receptor (LDL-R) (LDL-R -/-), and apolipoprotein E (apoE) knockout mice (apoE -/-). The effects of exogenous apoE, heparin, Triton WR 1339, and lactoferrin on catabolism of emulsions were also assayed. n-3 TG emulsions were cleared faster from blood and had different extrahepatic tissue targeting compared to n-6 TG emulsions. In apoE -/- and LDL-R -/- mice, blood clearance of n-6 TG emulsions slowed with decreased liver uptake, but no changes were observed in n-3 TG emulsion clearance and tissue uptake compared to WT mice. In WT mice, addition of exogenous apoE to the emulsion increased liver uptake of n-6 TG emulsions but had no impact on n-3 TG emulsions. Pre-injection of heparin increased and Triton WR 1339 and lactoferrin decreased blood clearance of n-6 TG emulsions with little or no effect on n-3 TG emulsions. Liver uptake of n-6 TG emulsions increased after heparin injection and decreased after Triton WR 1339 injection, but uptake of n-3 TG emulsions was not changed. These data show that the catabolism of n-3 TG emulsions and the catabolism of n-6 TG emulsions occur via very different mechanisms. Removal of chylomicron-sized n-6 TG emulsions is modulated by lipoprotein lipase (LPL), apoE, LDL-R, and lactoferrin-sensitive pathways. In contrast, clearance of chylomicron-sized n-3 TG emulsions relies on LPL to a very minor extent and is independent of apoE, LDL-R, and lactoferrin-sensitive pathways.  相似文献   

14.
Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. One of the approaches considered for application involves biosorption either to biomass or to isolated biopolymers. Many bacterial polysaccharides have been shown to bind heavy metals with varying degrees of specificity and affinity. While various approaches have been adopted to generate polysaccharide variants altered in both structure and activity, metal biosorption has not been examined. Polymer engineering has included structural modification through the introduction of heterologous genes of the biosynthetic pathway into specific mutants, leading either to alterations in polysaccharide backbone or side chains, or to sugar modification. In addition, novel formulations can be designed which enlarge the family of available bacterial biopolymers for metal-binding and subsequent recovery. An example discussed here is the use of amphipathic bioemulsifiers such as emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1, that forms stable, concentrated (70%), oil-in-water emulsions (emulsanosols). In this system metal ions bind primarily at the oil/water interface, enabling their recovery and concentration from relatively dilute solutions. In addition to the genetic modifications described above, a new approach to the generation of amphipathic bioemulsifying formulations is based on the interaction of native or recombinant esterase and its derivatives with emulsan and other water-soluble biopolymers. Cation-binding emulsions are generated from a variety of hydrophobic substrates. The features of these and other systems will be discussed, together with a brief consideration of possible applications. Received: 2 February 2000 / Received revision: 2 June 2000 / Accepted: 3 June 2000  相似文献   

15.
L K Ju  W B Armiger 《BioTechniques》1992,12(2):258-263
Perfluorocarbon emulsions were applied to hybridoma cultures grown in tissue culture tubes and column bioreactors. The oxygen transfer enhancement effect of perfluorocarbon emulsions was clearly demonstrated by the higher cell densities obtained in emulsion-supplemented systems. In addition, perfluorocarbon emulsions were shown to provide better cell suspension in a low-shear environment. The study in column bioreactors also suggested a cell protective effect of the employed perfluorocarbon emulsions in reducing the damage to cells by gas bubbles.  相似文献   

16.
Attempts were made to isolate and identify the unit chemical structure essential for manifestation of the immunoadjuvant activities characteristic of bacterial cell walls. The N-acetylmuramyl-peptide subunit monomers, Nalpha-(N-acetylmuramyl-L-alanyl-D-isoglutaminyl)-Nepsilon-(glycylglycyl)-L-lysyl-D-alanine from the cell walls of Staphylococcus aureus (FDA 209P) and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelic acid and/or N-acetylmuramyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine from those of Lactobacillus plantarum (ATCC 8014), were shown to be unit chemical entities with definite adjuvant activity both in stimulation of antibody production and in induction of delayed-type hypersensitivity to ovalbumin when administered to guinea-pigs as water-in-oil emulsions.  相似文献   

17.
The effects of six different polyglycerol esters of fatty acids (PGEs) and two different particle sizes produced using various processing parameters on the physicochemical properties and stability of the β-carotene emulsions during digestion in simulated gastric fluid (SGF) were investigated. β-Carotene emulsions were prepared by high-pressure homogenization using β-carotene (0.1% w/w) in soybean oil as the oil phase and 1% (w/w) PGE in Milli-Q water as the water phase. The particle size of β-carotene emulsions was measured by a laser diffraction technique, and the stability of emulsions was interpreted in terms of the increase in particle size and span value of emulsion droplets and the retention of β-carotene during digestion in SGF. The average particle size ranges of emulsions were 0.17 to 0.27 μm for fine emulsions and 1.16 to 1.59 μm for coarse emulsions. In the prepared β-carotene emulsions, the particle size decreased with increasing polymerization of the glycerol in PGEs, and the higher polymerization of the glycerol also increased the stability of emulsions during digestion in SGF. Although the β-carotene content in the emulsions significantly decreased with increasing digestion period, loss of β-carotene was more severe in unstable emulsions than in stable emulsions, suggesting that the particles incorporated into droplets could provide some protective barrier for decreasing the β-carotene degradation. Therefore, β-carotene emulsions stabilized by PGEs with high polymerization of the glycerol may be useful for further applications in food and drug formulations. Decaglycerol monooleate (MO750) was demonstrated to be the most effective emulsifier in stabilizing β-carotene emulsions in this study.  相似文献   

18.
The state of water contained in emulsions, particularly in o/w emulsions, was studied as a model of water orientation at the peripheries of biomembranes. Dielectric measurements made at microwave frequency on emulsions containing water and liquid paraffin in various ratios with emulsifiers revealed that the o/w emulsions possessed considerably reduced dielectric loss as compared with theoretical values obtained in accordance with the Maxwell-Wagner model, while the dielectric properties of w/o emulsion were in good agreement with the theoretically expected values. The observations seem to be explained by assuming changes in the state of water in the oil-water interfacial layer in o/w emulsions. The preparation of stable emulsions for use in this study is also discussed.  相似文献   

19.
The N-terminal 17% of apolipoprotein B (apoB-17) readily associates with dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) to form large (240-A diameter) discoidal particles. Because apoB is normally secreted with triacylglycerol (TAG)-rich lipoproteins, we studied the binding of apoB-17 to triolein-rich emulsions modeling nascent TAG-rich very low density-like lipoproteins. Emulsions with the following composition (by weight) were prepared: 85--89% triolein, 1.1--1.4% cholesterol, and 10--14% phosphatidylcholines (PC) including either egg yolk (EY)-, dimyristoyl (DM)-, or dipalmitoyl (DP)-PC representing (at 25 degrees C), respectively, a fluid surface, a surface at transition, and a mainly solid surface. The respective sizes were 1,260 +/- 500, 1,070 +/- 450, and 830 +/- 300 A mean diameter. The emulsions were incubated with conditioned medium containing apoB-17, and then reisolated by ultracentrifugation. Analysis of the emulsion-bound proteins by gel electrophoresis showed that all three emulsions bound primarily apoB-17. The DPPC emulsions bound more apoB-17 than EYPC or DMPC emulsions. Immunoaffinity-purified apoB-17 exhibited saturable, high affinity binding to EYPC and DPPC emulsions. The respective K(d) values were 32 +/- 23 and 85 +/- 27 nM and capacities (N) were 10 and 58 molecules of apoB-17 per particle. When apoB-17 bound to emulsions was incubated with DMPC MLV at 26 degrees C for 18 h, it remained bound to the emulsions, indicating that once bound to these emulsions it is unable to exchange off and solubilize DMPC into discs. In contrast, apoE-3 bound to emulsions dissociated from the emulsions when incubated with DMPC MLV and formed discs.Thus, apoB-17 binds strongly and irreversibly to emulsions modeling nascent lipoproteins. It therefore may play an important role in the stabilization of nascent VLDL and chylomicrons.- Herscovitz, H., A. Derksen, M. T. Walsh, C. J. McKnight, D. L. Gantz, M. Hadzopoulou-Cladaras, V. Zannis, C. Curry, and D. M. Small. The N-terminal 17% of apoB binds tightly and irreversibly to emulsions modeling nascent very low density lipoproteins. J. Lipid Res. 2001. 42: 51;-59.  相似文献   

20.
Arterial wall sphingomyelinase (SMase) has been proposed to be involved in atherogenesis. SMase modification of lipoproteins has been shown to occur in atherosclerotic lesions and to facilitate their uptake by macrophages and foam cell formation. To investigate the mechanism of macrophage uptake enhanced by SMase, we prepared lipid emulsions containing sphingomyelin (SM) or ceramide (CER) as model particles of lipoproteins. SMase remarkably increased the uptake of SM-containing emulsions by J774 macrophages without apolipoproteins. The emulsion uptake was negatively correlated with the degree of particle aggregation by pretreatment with SMase, whereas the uptake of CER-containing emulsions was significantly larger than SM-containing emulsions, indicating that enhancement of uptake is due to the generation of CER molecules in particles but not to the aggregation by SMase. Heparan sulfate proteoglycans (HSPGs) and low density lipoprotein receptor-related protein (LRP) were crucial for CER-enhanced emulsion uptake, because heparin or lactoferrin inhibited the emulsion uptake. Confocal microscopy also showed that SMase promoted both binding and internalization of emulsions by J774 macrophages, which were almost abolished by lactoferrin. Apolipoprotein E further increased the uptake of CER-containing emulsions compared with SM-containing emulsions. These findings suggest the generation of CER in lipoproteins by SMase facilitates the macrophage uptake via HSPG and LRP pathways and plays a crucial role in foam cell formation. Thus, CER may act as an important atherogenic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号