共查询到20条相似文献,搜索用时 15 毫秒
1.
Aboulmagd E Oppermann-Sanio FB Steinbüchel A 《Applied and environmental microbiology》2001,67(5):2176-2182
Synechocystis sp. strain PCC6308 cyanophycin synthetase was purified 72-fold in three steps by anion exchange chromatography on Q Sepharose, affinity chromatography on the triazine dye matrix Procion Blue HE-RD Sepharose, and gel filtration on Superdex 200 HR from recombinant cells of Escherichia coli. The native enzyme, which catalyzed the incorporation of arginine and aspartic acid into cyanophycin, has an apparent molecular mass of 240 +/- 30 kDa and consists of identical subunits of 85 +/- 5 kDa. The K(m) values for arginine (49 microM), aspartic acid (0.45 mM), and ATP (0.20 mM) indicated that the enzyme had a high affinity towards these substrates. During in vitro cyanophycin synthesis, 1.3 +/- 0.1 mol of ATP per mol of incorporated amino acid was converted to ADP. The optima for the enzyme-catalyzed reactions were pH 8.2 and 50 degrees C, respectively. Arginine methyl ester (99.5 and 97% inhibition), argininamide (99 and 96%), S-(2-aminoethyl) cysteine (43 and 42%), beta-hydroxy aspartic acid (35 and 37%), aspartic acid beta-methyl ester (38 and 40%), norvaline (0 and 3%), citrulline (9 and 7%), and asparagine (2 and 0%) exhibited an almost equal inhibitory effect on the incorporation of both arginine and aspartic acid, respectively, when these compounds were added to the complete reaction mixture. In contrast, the incorporation of arginine was diminished to a greater extent than that of aspartic acid, respectively, with canavanine (82 and 53%), lysine (36 and 19%), agmatine (33 and 25%), D-aspartic acid (37 and 30%), L-glutamic acid (13 and 5%), and ornithine (23 and 11%). On the other hand, canavanine (45% of maximum activity) and lysine (13%) stimulated the incorporation of aspartic acid, whereas aspartic acid beta-methyl ester (53%) and asparagine (9%) stimulated the incorporation of arginine. [(3)H]lysine (15% of maximum activity) and [(3)H]canavanine (13%) were incorporated into the polymer, when they were either used instead of arginine or added to the complete reaction mixture, whereas L-glutamic acid was not incorporated. No effect on arginine incorporation was obtained by the addition of other amino acids (i.e., alanine, histidine, leucine, proline, tryptophan, and glycine). Various samples of chemically synthesized poly-alpha,beta-D,L-aspartic acid served as primers for in vitro synthesis of cyanophycin, whereas poly-alpha-L-aspartic acid was almost inactive. 相似文献
2.
Kolodny NH Bauer D Bryce K Klucevsek K Lane A Medeiros L Mercer W Moin S Park D Petersen J Wright J Yuen C Wolfson AJ Allen MM 《Journal of bacteriology》2006,188(3):934-940
Experiments were carried out to examine the effects of nitrogen source on nitrogen incorporation into cyanophycin during nitrogen limitation and repletion, both with or without inhibition of protein synthesis, in cyanobacteria grown on either nitrate or ammonium. The use of nitrate and ammonium, 14N labeled in the growth medium and 15N labeled in the repletion medium, allows the determination of the source of nitrogen in cyanophycin using proton nuclear magnetic resonance spectroscopy. The data suggest that nitrogen from both the breakdown of cellular protein (14N) and directly from the medium (15N) is incorporated into cyanophycin. Nitrogen is incorporated into cyanophycin at different rates and to different extents, depending on the source of nitrogen (ammonium or nitrate) and whether the cells are first starved for nitrogen. These differences appear to be related to the activity of nitrate reductase in cells and to the possible expression of cyanophycin synthetase during nitrogen starvation. 相似文献
3.
Allen MM Yuen C Medeiros L Zizlsperger N Farooq M Kolodny NH 《Biochimica et biophysica acta》2005,1725(2):241-246
(1)H NMR spectroscopy was used to compare the uptake of nitrogen into cyanobacterial cyanophycin from two sources: from the breakdown of intracellular proteins and amino acids, and directly from the external growth medium. Cells grown initially in medium containing (14)N-nitrate were transferred to (15)N-nitrate medium in the presence of chloramphenicol in both low (4 microE m(-2) s(-1)) and normal (100 microE m(-2) s(-1)) light, and in low light alone. Cyanophycin was separated from cells and analyzed by (1)H NMR spectroscopy. Cyanophycin is synthesized both from (14)N (degradation of cellular proteins) and from (15)N in the medium, the latter at a faster rate and to a greater extent under all conditions. SDS-PAGE showed that cyanophycin synthesis takes place by addition of monomers to already synthesized polymer. 相似文献
4.
1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopy has been used to characterize cyanophycin, a multi-l-arginyl-poly-[l-aspartic acid] polypeptide from the cyanobacterium Synechocystis sp. strain PCC 6308. 1H, 13C and 15N chemical shifts and 1JHN and 1JCN coupling constants were measured in isolated 15N-labeled cyanophycin, and showed chemical shift values and J-couplings consistent with the reported polypeptide structure. 15N enrichment levels were determined from the extent of 1H-15N J-coupling in 1H NMR spectra of cyanophycin. Similar experiments using 13C-15N coupling in 13C NMR spectra were not useful in determining enrichment levels. 相似文献
5.
PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803 下载免费PDF全文
Maheswaran M Ziegler K Lockau W Hagemann M Forchhammer K 《Journal of bacteriology》2006,188(7):2730-2734
Cyanophycin (multi-L-arginyl-poly-L-aspartic acid) is a nitrogen storage polymer found in most cyanobacteria and some heterotrophic bacteria. The cyanobacterium Synechocystis sp. strain PCC 6803 accumulates cyanophycin following a transition from nitrogen-limited to nitrogen-excess conditions. Here we show that the accumulation of cyanophycin depends on the activation of the key enzyme of arginine biosynthesis, N-acetyl-L-glutamate kinase, by signal transduction protein PII. 相似文献
6.
Margaret V. Merritt Silvia S. Sid Ludmila Mesh Mary M. Allen 《Archives of microbiology》1994,162(3):158-166
Gas chromatography-mass spectrometry studies of the nitrogen isotopic composition of the N-trifluoroacetyl n-butyl ester derivatives of the amino acids from isolated hydrolyzed cyanophycin from 15N-enriched cells led to two major findings: (1) the amino acid composition of this granular polypeptide, isolated using procedures optimized for extracting and purifying cyanophycin from cells in the stationary growth phase, varied with the culture growth condition; (2) the rate of incorporation of exogenous nitrate differed for each nitrogen atom of the amino acid constituents of cyanophycin or cyanophycin-like polypeptide. Arginine and aspartic acid were the principle components of cyanophycin isolated from exponentially growing cells and from light-limited stationary phase cells, with glutamic acid as an additional minor component. The cyanophycin-like polypeptide from nitrogen-limited cells contained only aspartic and glutamic acids, but no arginine. The glutamic acid content decreased and arginine content increased as nitrate was provided to nitrogen-limited cells. These cells rapidly incorporated nitrate at different rates at each cyanophycin nitrogen site: guanidino nitrogens of arginine>aspartic acid >-amino nitrogen of arginine>glutamic acid. Little media-derived nitrogen was incorporated into cyanophycin of exponentially growing cells during one cellular doubling time.Abbreviations
asp-TAB, glu-TAB, arg-TAB
N-Trifluoroacetyl n-butyl ester derivatives of aspartic acid, glutamic acid and arginine, respectively
-
CAP
chloramphenicol
-
CF
correction factor
-
TFAA
Trifluoroacetic anhydride
-
MBTFA
N-Methyl-bis-trifluoroacetamide 相似文献
7.
Eva Foerg Laura Saporito Sheila Huang Joy Yang Mary M. Allen 《FEMS microbiology letters》1990,69(1-2):105-108
The first two restriction endonucleases to be characterized in the cyanobacterium Synechocystis sp. PCC 6308 are described. SynI, an AvaII isoschizomer, recognizes the base sequence 5-GG[AT]CC-3. SynII, an XmnI isoschizomer, recognizes the sequence 5-GAANNNNTTC-3. 相似文献
8.
ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803. 总被引:2,自引:1,他引:2 下载免费PDF全文
Glutamine synthetase (GS) inactivation was observed in crude cell extracts and in the high-speed supernatant fraction from the cyanobacterium Synechocystis sp. strain PCC 6803 following the addition of ammonium ions, glutamine, or glutamate. Dialysis of the high-speed supernatant resulted in loss of inactivation activity, but this could be restored by the addition of NADH, NADPH, or NADP+ and, to a lesser extent, NAD+, suggesting that inactivation of GS involved ADP-ribosylation. This form of modification was confirmed both by labelling experiments using [32P]NAD+ and by chemical analysis of the hydrolyzed enzyme. Three different forms of GS, exhibiting no activity, biosynthetic activity only, or transferase activity only, could be resolved by chromatography, and the differences in activity were correlated with the extent of the modification. Both biosynthetic and transferase activities were restored to the completely inactive form of GS by treatment with phosphodiesterase. 相似文献
9.
A novel gene slr2049 was identified in Synechococcus sp. PCC7002 by homologous alignment. The features and possible functions of slr2049 gene were predicted by bioinformatics analysis. The function of slr2049 was analyzed in vitro with a heterologous Escherichia coli system with plasmids conferring biosynthesis of phycocyanobilin (PCB) and of the acceptor proteins, β-phycocyanin (CpcB). The resulting products were evaluated with SDS-PAGE and absorption spectra. The function of slr2049 was further analyzed via site-directed mutations. Two mutants, slr2049 (W14L) and slr2049 (Y132S) were generated. The results showed that Slr2049 could catalyze the chromophorylation of CpcB. Compared to wild type, mutant Slr2049 (W14L) had red-shifted absorbance maxima and was not highly fluorescent as the wild-type. However, mutant Slr2049 (Y132S) was almost the same as the wild-type. In conclusion, our study suggests that we have cloned a novel gene and this gene may play an important role in attachment of the chromophores to the apo-proteins. 相似文献
10.
Cyanophycin is a natural source of polypetide consisting of aspartic acid as a backbone and arginine as its side chain. After the removal of arginine, the remaining poly-aspartate can be served in numerous industrial and biomedical applications. The synthesis of cyanophycin is catalyzed by cyanophycin synthetase. In this study, we used lactic acid bacteria to produce cyanophycin by nisin-controlled gene expression system (NICE). The cyanophycin synthetase gene cphA of Synechocystis sp. strain PCC6803 was cloned to the vector pNZ8149 followed by transformation into Lactococcus lactis subsp. cremoris NZ3900. The effects of nisin concentrations and the amounts of supplemented aspartic acid and arginine were examined for the production of cyanophycin. Alterations of the terminus of cphA gene were also conducted in an attempt to increase the yield of cyanophycin. An optimal cyanophycin production was noted under a culture condition of log phase induced at 250 ng/mL nisin in M17L medium supplemented with 20 mM arginine and 10 mM aspartic acid. An insertion of glycine residue at the C terminus of cyanophycin synthetase resulted in a yield of 20% of dry cell weight, a 10-fold increase when compared with the wild type. The results showed that recombinant lactic acid bacteria, a GRAS system, could provide an alternative approach of producing cyanophycin suitable for agricultural and biomedical applications. 相似文献
11.
Stephan DP Ruppel HG Pistorius EK 《Zeitschrift für Naturforschung. C, Journal of biosciences》2000,55(11-12):927-942
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803. 相似文献
12.
Tran Hai Fred Bernd Oppermann-Sanio Alexander Steinbüchel 《Applied and environmental microbiology》2002,68(1):93-101
The thermophilic cyanobacterium Synechococcus sp. strain MA19 contained the structural genes for cyanophycin synthetase (cphA) and cyanophycinase (cphB), which were identified, cloned, and sequenced in this study. The translation products of cphA and cphB exhibited high levels of similarity to corresponding proteins of other cyanobacteria, such as Anabaena variabilis and Synechocystis sp. Recombinant cells of Escherichia coli harboring cphA colinear with lacPO accumulated cyanophycin that accounted for up to 25% (wt/wt) of the dry cell matter in the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG). The cyanophycin synthetase was enriched 123-fold to electrophoretic homogeneity from the soluble fraction of the recombinant cells by anion-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified cyanophycin synthetase maintained the parental thermophilic character and was active even after prolonged incubation at 50 degrees C; in the presence of ectoine the enzyme retained 90% of its activity even after 2 h of incubation. The in vitro activity of the enzyme depended on ATP, primers, and both substrates, L-arginine and L-aspartic acid. In addition to native cyanophycin, the purified enzyme accepted a modified cyanophycin containing less arginine, alpha-arginyl aspartic acid dipeptide, and poly-alpha,beta-DL-aspartic acid as primers and also incorporated beta-hydroxyaspartic acid instead of L-aspartic acid or L-canavanine instead of L-arginine at a significant rate. The lack of specificity of this thermostable enzyme with respect to primers and substrates, the thermal stability of the enzyme, and the finding that the enzyme is suitable for in vitro production of cyanophycin make it an interesting candidate for biotechnological processes. 相似文献
13.
The biosynthesis and accumulation of cyanophycin in the thermophilic cyanobacterium Synechococcus sp. MA19 were studied. By growing the cells in a 80-l closed tubular photobioreactor under controlled conditions, the cells accumulated cyanophycin amounting up to 3.5% of the dry cell matter. The cyanophycin was purified and chemical analysis showed that it was composed of arginine and aspartic acid occurring at a molar ratio of 1:0.9. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a broad distribution of the apparent molecular masses ranging from 20 to 130 kDa with a maximum at 50 kDa. During a three-step purification procedure involving ion exchange chromatography and gel filtration, the cyanophycin synthetase from strain MA19 was purified 144-fold to electrophoretic homogeneity. It consisted of only one single type of subunit exhibiting an apparent molecular mass of 130 kDa. The enzyme catalyzed the polymerization of arginine and aspartate at elevated temperatures and was even active at 80 degrees C. 相似文献
14.
Tocopherols (vitamin E) are lipid-soluble antioxidants synthesized only by photosynthetic eukaryotes and some cyanobacteria, and have been assumed to play important roles in protecting photosynthetic membranes from oxidative stress. To test this hypothesis, tocopherol-deficient mutants of Synechocystis sp. strain PCC 6803 (slr1736 and slr1737 mutants) were challenged with a series of reactive oxygen species-generating and lipid peroxidation-inducing chemicals in combination with high-light (HL) intensity stress. The tocopherol-deficient mutants and wild type were indistinguishable in their growth responses to HL in the presence and absence of superoxide and singlet oxygen-generating chemicals. However, the mutants showed enhanced sensitivity to linoleic or linolenic acid treatments in combination with HL, consistent with tocopherols playing a crucial role in protecting Synechocystis sp. strain PCC 6803 cells from lipid peroxidation. The tocopherol-deficient mutants were also more susceptible to HL treatment in the presence of sublethal levels of norflurazon, an inhibitor of carotenoid synthesis, suggesting carotenoids and tocopherols functionally interact or have complementary or overlapping roles in protecting Synechocystis sp. strain PCC 6803 from lipid peroxidation and HL stress. 相似文献
15.
Periplasmic proteins were obtained from control cells and salt-adapted cells of the cyanobacterium Synechocystis sp. PCC 6803 using the method of cold osmotic shock. Two of these proteins (PP 1, apparent mol. mass 27.6 kDa, and PP 3,
apparent mol. mass 39.9 kDa) were accumulated in high amounts in the periplasm of salt-adapted cells, while the major periplasmic
protein (PP 2, apparent mol. mass 36.0 kDa) was accumulated independently from salt. After isolation from gels and partial
sequencing, the proteins could be assigned to proteins deduced from the complete genome sequence of Synechocystis. Neither salt-induced periplasmic proteins (PP 1, Slr0924 and PP 3, Slr1485) exhibited sequence similarity to proteins of
known function from databases. The major protein (PP 2-Slr0513) showed significant sequence similarities to iron-binding proteins.
All proteins included typical leader sequences at their N-terminus.
Received: 21 September 1998 / Accepted: 17 December 1998 相似文献
16.
Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. 总被引:1,自引:6,他引:1 下载免费PDF全文
Glutamine synthetases (GSs) from two cyanobacteria, one unicellular (Synechocystis sp. strain PCC 6803) and the other filamentous (Calothrix sp. strain PCC 7601 [Fremyella diplosiphon]), were purified to homogeneity. The biosynthetic activities of both enzymes were strongly inhibited by ADP, indicating that the energy charge of the cell might regulate the GS activity. Both cyanobacteria exhibited an ammonium-mediated repression of GS synthesis. In addition, the Synechocystis sp. showed an inactivation of GS promoted by ammonium that had not been demonstrated previously in cyanobacteria. 相似文献
17.
Kopycki JG Stubbs MT Brandt W Hagemann M Porzel A Schmidt J Schliemann W Zenk MH Vogt T 《The Journal of biological chemistry》2008,283(30):20888-20896
The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys(3) close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed. 相似文献
18.
Synechocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that Sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types and mutants. In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cycilzation. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division. 相似文献
19.
We identified eight bands by staining native gels for NADPH-nitrobluetetrazolium oxidoreductase activity after electrophoresis ofn-dodecyl-ß-D-maltoside-treated membranes of Synechocystissp. strain PCC 6803. Among them, bands A, C, D and E were attributedto the activity of NADPH dehydrogenase (NDH-1). Band A is ahighly active supercomplex of NDH-1 (about 1,000 kDa) that wasabsent in the 相似文献
20.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1). 相似文献