首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most promising approaches to detection of random point mutations are based on chemical cleavage of mismatches and other noncomplementarities. To demonstrate the specificity of this method, a model system was obtained for the first time as sets of 50-mer imperfect DNA duplexes containg all variants of mismatched and unpaired internal residues located in an invariant context and flanked by either A · T or G · C base pairs. Chemical cleavage of DNA duplexes immobilized on magnetic beads via the biotin-streptavidin interaction was accomplished using potassium permanganate or hydroxylamine, which are sensitive to the secondary DNA structure and react with thymine and cytosine, respectively. The reactivity of different mismatches was connected with the local duplex structure and depended on their type, orientation, and flanking nucleotides. The use of potassium permanganate and hydroxylamine to modify a heteroduplex mixture makes it possible to unambiguously detect a mismatch and, based on the type of reagent and the size of the cleavage products, to suppose the type and position of the mismatch and the flanking nucleotides. The model system can be used to evaluate the sensitivity of a chemical cleavage method and to control false-positive and false-negative results when different protocols are applied to the detection of DNA point mutations.  相似文献   

2.
Systematic study of chemical reactivity of non-Watson–Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T·A or G·C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO4 attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G·C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and “open” non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA.  相似文献   

3.
In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences.  相似文献   

4.
Many mutation detection techniques rely upon recognition of mismatched base pairs in DNA hetero-duplexes. Potassium permanganate in combination with tetraethylammonium chloride (TEAC) is capable of chemically modifying mismatched thymidine residues. The DNA strand can then be cleaved at that point by treatment with piperidine. The reactivity of potassium permanganate (KMnO4) in TEAC toward mismatches was investigated in 29 different mutations, representing 58 mismatched base pairs and 116 mismatched bases. All mismatched thymidine residues were modified by KMnO4/TEAC with the majority of these showing strong reactivity. KMnO4/TEAC was also able to modify many mismatched guanosine and cytidine residues, as well as matched guanosine, cytidine and thymidine residues adjacent to, or nearby, mismatched base pairs. Previous techniques using osmium tetroxide (OsO4) to modify mismatched thymidine residues have been limited by the apparent lack of reactivity of a third of all T/G mismatches. KMnO4/TEAC showed no such phenomenon. In this series, all 29 mutations were detected by KMnO4/TEAC treatment. The latest development of the Single Tube Chemical Cleavage of Mismatch Method detects both thymidine and cytidine mismatches by KMnO4/TEAC and hydroxylamine (NH2OH) in a single tube without a clean-up step in between the two reactions. This technique saves time and material without disrupting the sensitivity and efficiency of either reaction.  相似文献   

5.
A spectroscopic assay for detection of extrahelical thymine residues in DNA heteroduplexes under their modification by potassium permanganate has been developed. The assay is based on increase in absorbance at 420 nm due to accumulation of thymidine oxidation intermediates and soluble manganese dioxide. The analysis was carried out using a set of 19-bp DNA duplexes containing unpaired thymidines opposite tetrahydrofuranyl derivatives mimicking a widespread DNA damage (apurinic (AP) sites) and a library of 50-bp DNA duplexes containing all types of base mismatches in different surroundings. The relation between the selectivity of unpaired T oxidation and the thermal stability of DNA double helix was investigated. The method described here was shown to discriminate between DNA duplexes with one or two AP sites and to reveal thymine-containing mismatches and all noncanonical base pairs in AT-surroundings. Comparative results of CCM analysis and the rapid photometric assay for mismatch detection are demonstrated for the first time in the same model system. The chemical reactivity of target thymines was shown to correlate with local disturbance of double helix at the mismatch site. As the spectroscopic assay does not require the DNA cleavage reaction and gel electrophoresis, it can be easily automated and used for primary screening of somatic mutations.  相似文献   

6.
Whilst chemical cleavage of mismatch (CCM) detects all point mutations in DNA, its widespread use has been hampered by the complex multistage methodology and the need for toxic chemicals, in particular osmium tetroxide. Here we show that osmium tetroxide can be replaced by potassium permanganate, giving the same spectrum of mutation detection, but with greater sensitivity. The use of potassium permanganate is compatible with solid phase capture and fluorescent detection, giving a safer method of mutation detection. We present here a comparison of CCM with osmium tetroxide and with potassium permanganate, tested on a complete set of single base pair mismatches and a number of small insertion/deletions.  相似文献   

7.
We report the development of a simple and inexpensive assay for the detection of DNA polymorphisms and mutations that is based on the modification of mismatched bases by potassium permanganate. Unlike the chemical cleavage of mismatch assay, which also exploits the reactivity of potassium permanganate to detect genomic variants, the assay we describe here does not require a cleavage manipulation and therefore does not require expensive or toxic chemicals or a separation step, as mismatches are detected using direct optical methods in a microplate format. Studies with individual deoxynucleotides demonstrated that the reactivity with potassium permanganate resulted in a specific colour change. Furthermore, studies with synthetic oligonucleotide heteroduplexes demonstrated that this colour change phenomenon could be applied to detect mismatched bases spectrophotometrically. A collection of plasmids carrying single point mutations in the mouse β-globin promoter region was used as a model system to develop a functional mutation detection assay. Finally, the assay was validated as 100% effective in detecting mismatches in a blinded manner using DNA from patients previously screened for mutations using established techniques, such as sequencing, SSCP and denaturing high-performance liquid chromatography (DHPLC) analysis in DNA fragments up to 300 bp in length.  相似文献   

8.
The chemical reactivity of matched T and C bases to osmium tetroxide and hydroxylamine near mismatched and unmatched bases in a heteroduplex between two strands of DNA with multiple differences was examined. Data was available for matched bases one or two positions away from 24 mismatches. Reactive bases were found near 16 of the mismatches and were usually one or two bases away. This reactivity is consistent with structural studies indicating perturbation of the duplex around mismatches and will allow another mode of study of the effect of mismatches. The reactivity of these bases was found not to be strongly correlated with mismatch type or GC basepair content of the basepairs around the mismatches. Extra reactivity may have been promoted by the presence of either T or C in the mismatch allowing increased reactivity of nearby T or C. The utility of the phenomenon for the detection of mutations is discussed. Unmatched bases in the heteroduplex also gives rise to reactive matched bases nearby.  相似文献   

9.
The last decade has witnessed many exciting scientific publications associated with site-selective reactions of small chemical molecules with imperfectly matched DNA. Typical examples are carbodiimide, hydroxylamine, potassium permanganate, osmium tetroxide, chemical tagging probes, biotinylated, chemiluminescent and fluorescent probes, and all of them selectively react with imperfectly matched DNA. More recently, some therapeutic agents including DNA intercalating drugs and groove binders have been found to promote the in vivo repair system to recognize and repair the mismatch more effectively. The results have established a novel method for detection of mismatches. Development of new chemical reactions for detection of imperfectly matched DNA and mutations is a rapidly growing field and has attracted significant interest of scientists from both chemical and biological fields and it is the main focus of this review.  相似文献   

10.
Arora K  Beard WA  Wilson SH  Schlick T 《Biochemistry》2005,44(40):13328-13341
Molecular dynamics simulations of DNA polymerase (pol) beta complexed with different incorrect incoming nucleotides (G x G, G x T, and T x T template base x incoming nucleotide combinations) at the template-primer terminus are analyzed to delineate structure-function relationships for aberrant base pairs in a polymerase active site. Comparisons, made to pol beta structure and motions in the presence of a correct base pair, are designed to gain atomically detailed insights into the process of nucleotide selection and discrimination. In the presence of an incorrect incoming nucleotide, alpha-helix N of the thumb subdomain believed to be required for pol beta's catalytic cycling moves toward the open conformation rather than the closed conformation as observed for the correct base pair (G x C) before the chemical reaction. Correspondingly, active-site residues in the microenvironment of the incoming base are in intermediate conformations for non-Watson-Crick pairs. The incorrect incoming nucleotide and the corresponding template residue assume distorted conformations and do not form Watson-Crick bonds. Furthermore, the coordination number and the arrangement of ligands observed around the catalytic and nucleotide binding magnesium ions are mismatch specific. Significantly, the crucial nucleotidyl transferase reaction distance (P(alpha)-O3') for the mismatches between the incoming nucleotide and the primer terminus is not ideally compatible with the chemical reaction of primer extension that follows these conformational changes. Moreover, the extent of active-site distortion can be related to experimentally determined rates of nucleotide misincorporation and to the overall energy barrier associated with polymerase activity. Together, our studies provide structure-function insights into the DNA polymerase-induced constraints (i.e., alpha-helix N conformation, DNA base pair bonding, conformation of protein residues in the vicinity of dNTP, and magnesium ions coordination) during nucleotide discrimination and pol beta-nucleotide interactions specific to each mispair and how they may regulate fidelity. They also lend further support to our recent hypothesis that additional conformational energy barriers are involved following nucleotide binding but prior to the chemical reaction.  相似文献   

11.
John DM  Weeks KM 《Biochemistry》2002,41(21):6866-6874
2'-Amine-substituted nucleotides in hybridized duplexes can be chemically tagged in an acylation reaction that is faster for mismatched or flexible nucleotides than for residues constrained by base pairing. Here we explore mismatch and hybridization detection using probe oligodeoxynucleotides containing single 2'-aminocytidine or -uridine nucleotides annealed to DNA or RNA targets under nonstringent conditions, below T(m). Consistent with a mechanism in which 2'-amine acylation is gated by local nucleotide flexibility, we find that efficient acylation is correlated with formation of weaker or fewer hydrogen bonds in base pair mismatches. Using 2'-aminocytidine-containing probes annealed to both DNA and RNA targets, mismatches are reliably detected as rapid selective acylation of the 2'-amine group in two sequence contexts. For probe oligonucleotides containing 2'-aminouridine residues, good discrimination between U-A base pairs and U-G mismatches could be obtained for DNA-DNA but not for DNA-RNA duplexes upon the introduction of a single 2'-O-Me group 5' to the 2'-amino nucleotide. The 2'-O-Me group introduces a structural perturbation, presumably to a more A-form-like structure, that exaggerates local flexibility at mismatches in DNA strands. Thus, 2'-amine acylation can be used to interrogate all possible mismatches in DNA-DNA duplexes and mismatches involving 2'-amine-substituted cytidine nucleotides in DNA-RNA heteroduplexes. Applications of this chemistry include detecting and chemically proofreading single nucleotide polymorphisms in both DNA and RNA targets and quantifying absolute amounts of RNA.  相似文献   

12.
P. Schar  J. Kohli 《Genetics》1993,133(4):825-835
G to C transversion mutations show very strong allele-specific marker effects on the frequency of wild-type recombinants in intragenic two-factor crosses. Here we present a detailed study of the marker effect of one representative, the ade6-M387 mutation of Schizosaccharomyces pombe. Crosses of M387 with other mutations at varying distance reveal highly increased prototroph frequencies in comparison with the C to T transition mutation ade6-51 (control without any known marker effect) located four nucleotides from M387. The marker effect of M387 is strongest (>40-fold) for crosses with mutations less than 15 nucleotides from M387. It decreases to an intermediate level (5-10-fold) in crosses with mutations located 25-150 base pairs from M387/51 and is very low in crosses with mutations beyond 200 base pairs. On the basis of these results and the quantitation of the low efficiency of C/C mismatch repair presented in the accompanying publication we propose the existence of at least two different types of mechanisms for base mismatch repair in fission yeast. The major system is suggested to recognize all base mismatches except C/C with high efficiency and to generate long excision tracts (approximately 100 nucleotides unidirectionally). The minor system is proposed to recognize all base mismatches including C/C with low and variable efficiency and to have short excision tracts (approximately 10 nucleotides unidirectionally). We estimate from the M387 marker effect that the minor system accounts for approximately 1-8% repair of non-C/C mismatches (depending on the nature of the mutation) in fission yeast meiosis.  相似文献   

13.
We have examined the ability of the human mitochondrial DNA polymerase to correct errors in DNA sequence using single turnover kinetic methods. The rate of excision of single-stranded DNA ranged from 0.07 to 0.17 x s(-1), depending on the identity of the 3'-base. Excision of the 3'-terminal base from correctly base paired DNA occurred at a rate of 0.05 x s(-1), indicating that the cost of proofreading is minimal, as defined by the ratio of the k(exo) for correctly base-paired DNA divided by the rate of forward polymerization (0.05/37 = 0.14%). Excision of duplex DNA containing 1-7 mismatches was biphasic, and the rate and amplitude of the fast phase increased with the number of mismatches, reaching a maximum of 9 x s(-1). We showed that transfer of DNA from the polymerase to the exonuclease active site and back again occurs through an intramolecular reaction, allowing for a complete cycle of reactions for error correction. For DNA containing a buried mismatch (T:T followed by C:G base pairs), the 3' base was removed at a rate of 3 x s(-1). The addition of nucleotide to the reaction that is identical to the 3' base increased the rate of excision 7-fold to 21 x s(-1). We propose that the free nucleotide enhances the rate of transfer of the DNA to the exonuclease active site by interrupting the correct 3' base pair through interaction with the template base. The exonuclease contribution to fidelity is minimal if the calculation is based on hydrolysis of a single mismatch: (k(exo) + k(pol,over))/(k(pol,over)) = 10, but this value increases to approximately 200 when examining error correction in the presence of nucleotides.  相似文献   

14.
The enzyme mismatch cleavage (EMC) method relies on the use of the resolvase T4 Endonuclease VII to cleave and thus detect mismatches in heteroduplex DNA formed by annealing normal DNA with mutant DNA. Detection is based on cleavage 3′ to the mismatch within a few nucleotides. We report the detection of all 81 different homozygous single-basepair changes tested and present in the mouse β-globin promoter by using the EMC method with a single set of conditions. Efficiency of cleavage was rated as strong, medium, or weak based on the intensity of the cleavage product(s) compared with background bands on autoradiography. We expect this method to detect near 100% of mutations.  相似文献   

15.
Discrimination of base mismatches from normal Watson-Crick base pairs in duplex DNA constitutes a key approach to the detection of single nucleotide polymorphisms (SNPs). We have developed a sensor for a surface plasmon resonance (SPR) assay system to detect G-G, A-A, and C-C mismatch duplexes by employing a surface upon which mismatch-binding ligands (MBLs) are immobilized. We synthesized a new MBL consisting of 2,7-diamino-1,8-naphthyridine (damND) and immobilized it onto a CM5 sensor chip to carry out the SPR assay of DNA duplexes containing a single-base mismatch. The SPR sensor with damND revealed strong responses to all C-C mismatches, and sequence-dependent C-T and T-T mismatches. Compared to ND- and naphthyridine-azaquinolone hybrid (NA)-immobilized sensor surfaces, with affinity to mismatches composed of purine nucleotide bases, the damND-immobilized surface was useful for the detection of the mismatches composed of pyrimidine nucleotide bases.  相似文献   

16.
We have examined the fidelity of polymerization catalyzed by the human mitochondrial DNA polymerase using wild-type and exonuclease-deficient (E200A mutation) forms of recombinant, reconstituted holoenzyme. Each of the four nucleotides bind and incorporate with similar kinetics; the average dissociation constant for ground state binding is 0.8 microm, and the average rate of polymerization is 37 x s(-1), defining a specificity constant kcat/Km = 4.6 x 10(7) x m(-1) x s(-1). Mismatched nucleotides show weaker ground-state nucleotide binding affinities ranging from 57 to 364 microm and slower rates of polymerization ranging from 0.013 to 1.16 x s(-1). The kinetic parameters yield fidelity estimates of 1 error out of 260,000 nucleotides for a T:T mismatch, 3563 for G:T, and 570,000 for C:T. The accessory subunit increases fidelity 14-fold by facilitating both ground-state binding and the incorporation rate of the correct A:T base pair compared with a T:T mismatch. Correctly base-paired DNA dissociates from the polymerase at a rate of 0.02 x s(-1) promoting processive polymerization. Thus, the mitochondrial DNA polymerase catalyzed incorporation with an average processivity of 1850, defined by the ratio of polymerization rate to the dissociation rate (37/0.02) and with an average fidelity of one error in 280,000 base pairs.  相似文献   

17.
Assembly of the Mu transpososome is dependent on specific binding sites for the MuA transposase near the ends of the phage genome. MuA also contacts terminal nucleotides but only upon transpososome assembly, and base-specific recognition of the terminal nucleotides is critical for assembly. We show that Mu ends lacking the terminal 5 bp can form transpososomes, while longer DNA substrates with mutated terminal nucleotides cannot. The impact of the mutations can be suppressed by base mismatches near the end of Mu. Deletion of the flanking strands or mutation of the terminal nucleotides has differential effects on the cleavage and strand transfer reactions. These results show that the terminal nucleotides control the assembly and activation of transpososomes by influencing conformational changes around the active site.  相似文献   

18.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

19.
The electrophoretic gel-based chemical cleavage of the mismatch method gives an incomplete view of the DNA conformational changes induced by a single base mismatch. This spectroscopic study investigates the permanganate oxidation reactions with matched and mismatched DNA under constant and variable temperature conditions. The results, which include the oxidation levels, reaction patterns with isosbestic points, color changes, thermal spectra, spectroscopy derivative, and gel separation and melting temperatures, provide a fundamental background for identification of oligonucleotides containing single base mismatches by chemical means.  相似文献   

20.
We have devised a procedure to generate any single base mismatch in a constant sequence context, and have studied these from two points of view. (1) We have examined electrophoretic mobility of 458 base-pair fragments containing approximately centrally located single mismatches, in polyacrylamide gels, compared to fully matched DNA fragments. We found that no single mismatch caused a significant perturbation of gel mobility, and we conclude that all the mismatches may be accommodated within a helical geometry such that there is no alteration of the path of the helix axis in a straight DNA molecule. (2) We have studied all the single mismatches with respect to reactivity to a number of chemical probes. We found that: (a) No mispaired adenine bases are reactive to diethyl pyrocarbonate and are therefore not simply unpaired such that N-7 is exposed. (b) A number of mispaired thymine bases are reactive to osmium tetroxide, and cytosine bases to hydroxylamine. (c) Where crystal or nuclear magnetic resonance structures are available, the reactivity correlates with exposure of the pyrimidine 5,6 double bonds to attack in the major groove as a result of wobble base-pair formation. This is particularly clear for G.T and I.T base-pairs. (d) Reactivity of bases in mismatched pairs can be dependent on sequence context. (e) Reactivity of the C.C mismatch to hydroxylamine is suppressed at low pH, suggesting that a rearrangement of base-pairing occurs on protonation. The results overall are consistent with the formation of stacked intrahelical base-pairs wherever possible, resulting in no global distortion of the DNA structure, but specific enhancement of chemical reactivity in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号