首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of molluscan actomyosin ATPase activity   总被引:2,自引:0,他引:2  
The interaction of myosin and actin in many invertebrate muscles is mediated by the direct binding of Ca2+ to myosin, in contrast to modes of regulation in vertebrate skeletal and smooth muscles. Earlier work showed that the binding of skeletal muscle myosin subfragment 1 to the actin-troponin-tropomyosin complex in the presence of ATP is weakened by less than a factor of 2 by removal of Ca2+ although the maximum rate of ATP hydrolysis decreases by 96%. We have now studied the invertebrate type of regulation using heavy meromyosin (HMM) prepared from both the scallop Aequipecten irradians and the squid Loligo pealii. Binding of these HMMs to rabbit skeletal actin was determined by measuring the ATPase activity present in the supernatant after sedimenting acto-HMM in an ultracentrifuge. The HMM of both species bound to actin in the presence of ATP, even in the absence of Ca2+, although the binding constant in the absence of Ca2+ (4.3 X 10(3) M-1) was about 20% of that in the presence of Ca+ (2.2 X 10(4) M-1). Studies of the steady state ATPase activity of these HMMs as a function of actin concentration revealed that the major effect of removing Ca2+ was to decrease the maximum velocity, extrapolated to infinite actin concentration, by 80-85%. Furthermore, at high actin concentrations where most of the HMM was bound to actin, the rate of ATP hydrolysis remained inhibited in the absence of Ca+. Therefore, inhibition of the ATPase rate in the absence of Ca2+ cannot be due simply to an inhibition of the binding of HMM to actin; rather, Ca2+ must also directly alter the kinetics of ATP hydrolysis.  相似文献   

2.
An unsplitable analogue of ATP (adenylyl imidodiphosphate; AMPPNP) was incorporated into F-actin [Cooke, R. (1975) Biochemistry 14, 3250-3256]. The resulting polymers (F-actin-AMPPNP) activated the ATPase activity of myosin subfragment-1 (S1) as efficiently as normal F-actin; neither the maximum velocity at infinite actin concentration (Vmax) nor the affinity of actin to S1 in the presence of ATP (1/KATPase) changed, which indicates that the terminal phosphate of the bound nucleotide at the cleft region between the two domains of the actin molecule [Kabsch, W., Mannherz, H.G., & Suck, D. (1985) EMBO J. 4, 2113-2118] is not directly involved in a myosin binding site. However, the interaction of F-actin with troponin-tropomyosin was strongly modulated by the replacement of ADP with AMPPNP. The troponin-tropomyosin complex strongly enhanced the activation of S1-ATPase activity by F-actin-AMPPNP in the presence of Ca2+, although it has no effect on the activation by normal F-actin-ADP. KATPase was enhanced about threefold by troponin-tropomyosin in the presence of Ca2+, while Vmax was not markedly changed. F-actin-AMPPNP is highly potentiated by troponin-tropomyosin even with low S1 to actin ratios and at high ATP conditions. In the absence of Ca2+, the activation by F-actin-AMPPNP was inhibited normally by troponin-tropomyosin. The results suggest that the terminal beta-phosphate of the bound nucleotide in F-actin is located in a region which is important for regulation of the interaction with myosin.  相似文献   

3.
P D Wagner  D B Stone 《Biochemistry》1983,22(6):1334-1342
Sedimentation in a preparative ultracentrifuge was used to determine the affinity of heavy meromyosin, HMM, for regulated actin, F-actin plus troponin-tropomyosin, in the presence of MgATP at pH 7.0, 20 degrees C, and mu = 18 mM. HMM was prepared from vertebrate striated muscle myosin by a mild chymotryptic digestion. This HMM contained 85-90% intact 19 000-dalton light chains, LC2. In the presence of calcium, 90% of the HMM bound to regulated actin with an association constant of (2-4) X 10(4) M-1. In the absence of calcium, while one-third of the HMM bound with an affinity similar to that observed in the presence of calcium, the rest bound much more weakly. It was not possible to accurately determine the association constant for this weakly binding HMM, but a 20-fold reduction in affinity is consistent with the binding data. The binding of single-headed heavy meromyosin to regulated actin was similarly sensitive to the calcium concentration. Since removal of calcium inhibits the regulated actin-activated ATPase of HMM greater than 20-fold, troponin-tropomyosin must be capable of inhibiting both the binding of HMM to regulated actin and a step which occurs after binding but prior to product release. Removal of LC2 increased the fraction of HMM with calcium-insensitive binding, and adding LC2 back to this depleted HMM restored most of the calcium sensitivity. Chymotryptic cleavage of LC2 to a 17 000-dalton fragment destroyed the calcium-sensitive binding of HMM to regulated actin. Phosphorylation of LC2, however, had no detectable effect on this binding. Thus, the calcium-sensitive binding of HMM to regulated actin requires that both the head-tail junction and the N-terminal part of LC2 be intact. Binding studies with cross-linked regulated actins and kinetic measurements of the rates of change in turbidity demonstrate that this calcium sensitivity is due to calcium binding to troponin and not to LC2.  相似文献   

4.
R T King  L E Greene 《Biochemistry》1985,24(24):7009-7014
Chalovich and Eisenberg [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437] have suggested that at low ionic strength, troponin-tropomyosin regulates the actomyosin ATPase activity by inhibiting a kinetic step in the actomyosin ATPase cycle rather than by blocking the binding of myosin subfragment 1 (S-1) to actin. This leads to the prediction that troponin-tropomyosin should inhibit the ATPase activity of the complex of actin and S-1 (acto . S-1) even when S-1 is cross-linked to actin. We now find that the ATPase activity of cross-linked actin . S-1 prepared under milder conditions than those used by Mornet et al. [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306] is inhibited 90% by troponin-tropomyosin in the absence of Ca2+. At mu = 18 mM, 25 degrees C, the ATPase activity of this cross-linked preparation is only about 2-fold greater than the maximal actin-activated ATPase activity of S-1 obtained with regulated actin in the absence of Ca2+. At physiological ionic strength, the ATPase activity of this cross-linked actin . S-1 preparation is inhibited about 95% by troponin-tropomyosin. Since cross-linked S-1 behaves kinetically like S-1 in the presence of infinite actin concentration, it is very unlikely that inhibition of the ATPase activity of cross-linked actin . S-1 is due to blocking of the binding of S-1 to actin. Therefore, these results are in agreement with the suggestion that troponin-tropomyosin regulates primarily by inhibiting a kinetic step in the ATPase cycle.  相似文献   

5.
Equilibrium-binding studies at 4 degrees C show that, in the instance of crayfish, troponin C contains only one Ca-binding site with an affinity in the range of physiological free [CA2+] (K = 2 X 10(5) M-1). At physiological levels of Mg2+, this site does not bind Mg2+. In the complexes of troponin C-troponin I, troponin and troponin-tropomyosin, the regulatory Ca-specific site exhibits a 10- to 20-fold higher affinity (K = 2-4 X 10(6) M-1). The latter affinity is reduced to that of troponin C upon incorporation of the troponin-tropomyosin complex into the actin filament (regulated actin), as determined at 4 degrees C by the double isotope technique. The Ca-binding constant is again shifted to a higher value (7 X 10(6) M-1) when regulated actin is associated with nucleotide-free myosin. Both crayfish myofibrils and rabbit actomyosin regulated by crayfish troponin-tropomyosin display a steep rise in ATPase activity with [Ca2+]. Comparison of the pCa/ATPase relationship and the Ca-binding properties at 25 degrees C for the crayfish troponin-regulated actomyosin indicates that while the threshold [Ca2+] for activation corresponds to the range of [Ca2+] where the regulatory site in its low affinity state (K = 1 X 10(5) M-1) starts to bind Ca2+ significantly, full activation is reached at [Ca2+] for which the Ca-specific site in its high affinity state (K = 3 X 10(6) M-1) approaches saturation. These results suggest that, in the actomyosin ATPase cycle, there are at least two calcium-activated states of regulated actin (one low and one high), the high affinity state being induced by interactions of myosin with actin in the cycle.  相似文献   

6.
P D Wagner 《Biochemistry》1984,23(25):5950-5956
A low-speed centrifugation assay has been used to examine the binding of myosin filaments to F-action and to regulated actin in the presence of MgATP. While the cross-linking of F-actin by myosin was Ca2+ insensitive, much less regulated actin was cross-linked by myosin in the absence of Ca2+ than in its presence. Removal of the 19000-dalton, phosphorylatable light chain from myosin resulted in the loss of this Ca2+ sensitivity. Readdition of this light chain partially restored the Ca2+-sensitive cross-linking of regulated actin by myosin. Urea gel electrophoresis has been used to distinguish that fraction of heavy meromyosin which contains intact phosphorylatable light chain from that which contains a 17000-dalton fragment of this light chain. In the absence of Ca2+, heavy meromyosin which contained digested light chain bound to regulated actin in MgATP about 10-fold more tightly than did heavy meromyosin which contained intact light chain. The regulated actin-activated ATPases of heavy meromyosin also showed that cleavage of this light chain causes a substantial increase in the affinity of heavy meromyosin for regulated actin in the absence of Ca2+. Thus, the binding of both myosin and heavy meromyosin to regulated actin is Ca2+ sensitive, and this sensitivity is dependent on the phosphorylatable light chain.  相似文献   

7.
Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.  相似文献   

8.
In the field of muscle regulation, there is still controversy as to whether Ca2+, alone, is able to shift muscle from the relaxed to the fully active state or whether cross-bridge binding also contributes to turning on muscle contraction. Our previous studies on the binding of myosin subfragment 1 (S-1) to the troponin-tropomyosin-actin complex (regulated actin) in the absence of ATP suggested that, even in Ca2+, the binding of rigor cross-bridges is necessary to turn on regulated actin fully. In the present study, we demonstrate that this is also the case for the turning on of the acto.S-1 ATPase activity. By itself, Ca2+ does not fully turn on the acto.S-1 ATPase activity; at low actin concentration, there is almost a 10-fold increase in ATPase activity when the regulated actin is fully turned on by the binding of rigor cross-bridges in the presence of Ca2+. This large increase in ATPase activity does not occur because the binding of S-1.ATP to actin is increased; the binding of S-1.ATP is almost the same to maximally turned-off and maximally turned-on regulated actin. The increase in ATPase activity occurs because of a marked increase in the rate of Pi release so that when the regulated actin is fully turned on, Pi release becomes so rapid that the rate-limiting step precedes the Pi release step. These results suggest that, while Ca2+, alone, does not fully turn on the regulated actin filament in solution, the binding of rigor cross-bridges can turn it on fully. If force-producing cross-bridges play the same role in vivo as rigor cross-bridges in vitro, there may be a synergistic effect of Ca2+ and cross-bridge binding in turning on muscle contraction which could greatly sharpen the response of the muscle fiber to Ca2+.  相似文献   

9.
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437; Chalovich, J. M., and Eisenberg, E. (1984) Biophys. J. 45, 221a; Wagner, P. D., and Stone, D. B. (1983) Biochemistry 22, 1334-1342; and Wagner, P. D. (1984) Biochemistry 23, 5950-5956). Since the low ionic strengths used in the above studies do not represent the physiological ionic strength under which intact muscle exhibits Ca2+-dependent tension development, we investigated the possibility of whether a Ca2+-dependent regulated actin-HMM interaction could be observed at physiological ionic strength (mu = 134 mM, pH 7.4) and in the presence of ATP (at 23-24 degrees C). Direct binding of HMM to varied concentrations of regulated actin (87.7-221 microM free actin) was measured by sedimentation in an air-driven ultracentrifuge. Under the above conditions, we found that the regulated actin activation of HMM-Mg2+-ATPase was about 94% inhibited in the absence of Ca2+ although the association constant (Ka) is only moderately affected in the presence of Ca2+. These results are similar to those obtained by Chalovich and Eisenberg (1982 and 1984) with subfragment 1 and HMM, respectively, at low ionic strength and support their suggestion that in solution tropomyosin-troponin may not act totally by physically blocking the formation of cross-bridges with actin, but instead may act to inhibit a kinetic step in the overall ATPase rate. Whether this holds true in more intact systems (e.g. myosin, thick filaments) remains to be determined. Our results also show a good correlation between levels of ATPase activation and HMM binding by unregulated actin and in regulated actin in the presence of Ca2+.  相似文献   

10.
The influence of the DTNB light chain of myosin on its enzymatic activities was examined by studying the superprecipitation of actomyosin and the actin-activated ATPase of heavy meromyosin (HMM) [EC 3.6.1.3]. Although the Ca2+-, Mg2+-, and EDTA-ATPase activities of control and DTNB myosin were practically the same, the superprecipitation of actomyosin prepared from actin and DTNB myosin occurred more slowly than that of control myosin. The apparent binding constant obtained from double-reciprocal plots of actin-activated ATPase of DTNB HMM was lower than that of control HMM. Recombination of DTNB myosin and HMM with DTNB light chains restored the original properties of myosin and HMM. The removal of DTNB light chain from myosin had no effect on the formation of the rigor complex between actin and myosin. These results suggest that the DTNB light chain participates in the interaction of myosin with actin in the presence of ATP.  相似文献   

11.
Characterization of caldesmon binding to myosin   总被引:3,自引:0,他引:3  
Caldesmon inhibits the binding of skeletal muscle subfragment-1 (S-1).ATP to actin but enhances the binding of smooth muscle heavy meromyosin (HMM).ATP to actin. This effect results from the direct binding of caldesmon to myosin in the order of affinity: smooth muscle HMM greater than skeletal muscle HMM greater than smooth muscle S-1 greater than skeletal muscle S-1 (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1878-1885). We now show that the difference between skeletal muscle HMM and S-1 is due to the presence of the S-2 region in HMM and is unrelated to light chain composition or to two-headed versus single-headed binding. Differences between the binding of smooth and skeletal muscle myosin subfragments to actin do not result from the lack of light chain 2 in skeletal muscle S-1. In the presence of ATP, caldesmon binds to smooth muscle myosin filaments with a stoichiometry of 1:1 (K = 1 x 10(6) M-1). Similar results were obtained for the binding of caldesmon to smooth muscle rod as well as the binding of the purified myosin-binding fragment of caldesmon to smooth muscle myosin. The binding of caldesmon to intact myosin is ATP sensitive. The interaction of caldesmon with myosin is apparently specific and sensitive to the structure of both proteins.  相似文献   

12.
Phosphorylation of the 20,000-dalton light chains of smooth muscle heavy meromyosin (HMM) from turkey gizzards results in a large increase in the actin-activated MgATPase activity over that observed with unphosphorylated HMM. In an attempt to define which step in the kinetic cycle is affected by phosphorylation, we have measured the binding of both unphosphorylated and phosphorylated HMM to actin in the presence of ATP using sedimentation. There was only a 4-fold difference in the actin binding constants of unphosphorylated HMM (5.35 x 10(3) M-1) and fully phosphorylated HMM (2.35 x 10(4) M-1). In contrast, the maximum rate of the actin-activated MgATPase activity (Vmax) of phosphorylated HMM was 25 times greater than that for unphosphorylated HMM. These data rule out a mechanism whereby the unphosphorylated light chain of myosin regulates actin-myosin interaction by directly or indirectly blocking the binding of HMM to actin. This implies that some step in the kinetic cycle other than the binding of HMM to actin must be regulated. We have also measured the rate constant for ATP hydrolysis (the initial phosphate burst) under the same conditions and found that this step was very fast compared to the steady state ATPase rate and was unaffected by phosphorylation. This suggests that the step which is regulated by phosphorylation is either phosphate release or a step preceding phosphate release but following ATP hydrolysis.  相似文献   

13.
Recent theoretical work on the cooperative equilibrium binding of myosin subfragment-1-ADP to regulated actin, as influenced by Ca2+, is extended here to the cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Exact solution of the general steady-state problem will require Monte Carlo calculations. Three interrelated special cases are discussed in some detail and sample computer (not Monte Carlo) solutions are given. The eventual objective is to apply these considerations to in vitro experimental data and to in vivo muscle models.  相似文献   

14.
The effect of phosphorylation in skeletal myosin light chain (LC2) on the actomyosin and acto-heavymeromyosin (HMM) ATPase activities was investigated in the presence or absence of regulatory proteins (tropomyosin-troponin complex). Phosphorylation in LC2 did not modulate the actin-myosin and actin-HMM interactions over a wide range of KCl concentrations from 30 to 150 mM without regulatory proteins. In the presence of regulatory proteins, phosphorylation in myosin LC2 enhanced the ATPase activity of actomyosin with calcium ions, but the removal of calcium ions made little difference in the ATPase activity between phosphorylated and dephosphorylated myosins. Ca2+-sensitivity of the regulated actomyosin was slightly changed by phosphorylation in myosin LC2. However, both the ATPase activity and Ca2+-sensitivity of the regulated acto-HMM were unaffected by phosphorylation in HMM LC2.  相似文献   

15.
We find that at 6 degrees C in the presence of 4 mM MgPPi, at low or moderate ionic strength, skinned rabbit psoas fibers exhibit a stiffness and an equatorial x-ray diffraction pattern similar to that of rigor fibers. As the ionic strength is increased in the absence of Ca2+, both the stiffness and the equatorial x-ray diffraction pattern approach those of the relaxed state. This suggests that, as in solution, increasing ionic strength weakens the affinity of myosin cross-bridges for actin, which results in a decrease in the number of cross-bridges attached. The effect is Ca2+-sensitive. Assuming that stiffness is a measure of the number of cross-bridge heads attached, in the absence of Ca2+, the fraction of attached cross-bridge heads varies from approximately 75% to approximately 25% over an ionic strength range where ionic strength in solution weakens the binding constant for myosin subfragment-1 binding to unregulated actin by less than a factor of 3. Therefore, this phenomenon appears similar to the cooperative Ca2+-sensitive binding of S1 to regulated actin in solution (Greene, L. E., and E. Eisenberg, 1980, Proc. Natl. Acad. Sci. USA, 77:2616). By comparing the binding constants in solution and in the fiber under similar conditions, we find that the "effective actin concentration," that is, the concentration that gives the same fraction of S1 molecules bound to actin in solution as cross-bridge heads are bound to actin in a fiber, is in the millimolar range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

17.
The effects of the divalent cations Mg2+, Mn2+ and Ca2+ on the Brownian rotational motion of fluorescently labeled myosin, heavy meromyosin and myosin subfragment-1 were measured by the method of time-resolved fluorescence depolarization. When Mg2+ was added to solutions of myosin or heavy meromyosin and EDTA, their rotational mobility increased. Ca2+ had no effect. Mn2+ increased the mobility of heavy meromyosin but decreased that of myosin. None of these divalent cations effected the mobility of subfragment-1. The binding of heavy meromyosin to actin was affected very little by Mg2+ or EDTA over a wide range of conditions. Divalent cations appear to change the swivel about which the heads of myosin rotate, presumably by binding to light chain 2 (also called DTNB light chain). However, the heads are still able to bind actin in nearly the same way whether Mg2+ is present or not. The concentration of free Mg2+ for the mid-point of the change in heavy meromyosin mobility is in good agreement with that for EDTA activation of ATPase activity. This suggests that EDTA activation is due to removal of Mg2+ bound to myosin itself.  相似文献   

18.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

20.
We have previously shown that inhibition of the ATPase activity of skeletal muscle myosin subfragment 1 (S1) by caldesmon is correlated with the inhibition of S1 binding in the presence of ATP or pyrophosphate (Chalovich, J., Cornelius, P., and Benson, C. (1987) J. Biol Chem. 262, 5711-5716). In contrast, Lash et al. (Lash, J., Sellers, J., and Hathaway, D. (1986) J. Biol. Chem. 261, 16155-16160) have shown that the inhibition of ATPase activity of smooth muscle heavy meromyosin (HMM) by caldesmon is correlated with an increase in the binding of HMM to actin in the presence of ATP. We now show, in agreement, that caldesmon does increase the binding of smooth muscle HMM to actin-tropomyosin while decreasing the ATPase activity. The effect of caldesmon on the binding of smooth HMM is reversed by Ca2+-calmodulin. Caldesmon strengthens the binding of smooth S1.ATP and skeletal HMM.ATP to actin-tropomyosin but to a lesser extent than smooth HMM.ATP. Furthermore, this increase in binding of smooth S1.ATP and skeletal HMM.ATP does not parallel the inhibition of ATPase activity. In contrast, in the absence of ATP, all smooth and skeletal myosin subfragments compete with caldesmon for binding to actin. Thus, the effect that caldesmon has on the binding of myosin subfragments to actin-tropomyosin depends on the source of myosin, the type of subfragment, and the nucleotide present. The inhibition of actin-activated ATP hydrolysis by caldesmon, however, is not greatly different for different smooth and skeletal myosin subfragments. Evidence is presented that caldesmon inhibits actin-activated ATP hydrolysis by attenuating the productive interaction between myosin and actin that normally accelerates ATP hydrolysis. The increased binding seen by some myosin subfragments, in the presence of ATP, may be due to binding of these subfragments to a nonproductive site on actin-caldesmon. The subfragments which show an increase in binding in the presence of ATP and caldesmon appear to bind directly to caldesmon as demonstrated by affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号