首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We assessed the hemodynamic effects induced by the thoracic pump in the intra- and extracranial veins of the cerebral venous system on healthy volunteers. Activation of the thoracic pump was standardized among subjects by setting the deep inspiration at 70% of individual vital capacity. Peak velocity (PV), time average velocity (TAV), vein area (VA), and flow quantification (Q) were assessed by means of echo color Doppler in supine posture. Deep respiration significantly increases PV, TAV, and Q, but it is limited to the extracranial veins. To the contrary, no significant hemodynamic changes were recorded at the level of the intracranial venous network. Moreover, at rest TAV in the jugular veins was significantly correlated with Q of the intracranial veins. We conclude that the modulation of the atmospheric pressure operated by the thoracic pump significantly modifies the hemodynamics of the jugular veins and of the reservoir of the neck and facial veins, with no effect on the vein network of the intracranial compartment.  相似文献   

3.
The anatomy of the cephalic venous system in the fowl was studied in 19 specimens by means of latex-injected preparations and by dissection. The brain sinuses converge dorsally upon the large cervical sinus and vertebral veins. Dorso-ventral communication is provided by the occipital veins posteriorly, while the ophthalmic system unites both dorsal and ventral sinuses and the temporal rete with the extracranial veins anteriorly. The jugular veins are formed from the superficial branches of the facial veins and serve mainly as outlets for extracranial blood. They are united at the base of the head by a prominent transverse anastomosis which slopes caudally towards the larger, right jugular. As in mammals, the carotid veins envelop the internal carotid arteries and anteriorly form a bulbous sinus cavernosus around the inter-carotid anastomosis.  相似文献   

4.
The MR-venography of the veins and brain venous sinuses, brachiocephalic veins an internal jugular veins duplex scanning have been performed in order to study the distinctions of cerebral venous hemodynamics of healthy people and the patients with venous encephalopathy caused by the extravasal compression of the brachiocephalic veins at the neck level and the superior sections of mediastinum. It has been revealed that the blood flow reducing in transverse brain sinuses occurs not only in the case of outflow disorder in the distal sections of the venous system, but also in norm. This reducing depends on anatomic constitution of confluens sinuum and the venous angle type of brachiocephalic veins. The three venous angle types of brachiocephalic veins have been distinguished: y-type, mu-type and Y-type. It has been registered that in case of the mu-type angle the blood flow can be reduced in norm due to peripheral resistance increase at the physiological bends of nearly a right angle type. The distinctions of hemodynamics in case of venous obstruction in contrast to arterial obstruction have been described. It has been registered that in case of outflow trouble in one of the internal jugular veins the speed and the volume of the blood flow in it are progressively reduced depending on the duration and the manifestation of compression. All this results in narrowing of the vein diameter from the affected side, and in compensatory distention of the diameter and increase of blood flow volume in the contralateral internal jugular vein, vertebral and external jugular veins, in succession.  相似文献   

5.
The lack of adequate recipient vessels often complicates microvascular breast reconstruction in patients who have previously undergone mastectomy and irradiation. In addition, significant size mismatch, particularly in the outflow veins, is an important contributor to vessel thrombosis and flap failure. The purpose of this study was to review the authors' experience with alternative venous outflow vessels for microvascular breast reconstruction. In a retrospective analysis of 1278 microvascular breast reconstructions performed over a 10-year period, the authors identified all patients in whom the external jugular or cephalic veins were used as the outflow vessels. Patient demographics, flap choice, the reasons for the use of alternative venous drainage vessels, and the incidence of microsurgical complications were analyzed. The external jugular was used in 23 flaps performed in procedures with 22 patients. The superior gluteal and transverse rectus abdominis musculocutaneous (TRAM) flaps were used in the majority of the cases in which the external jugular vein was used (72 percent gluteal, 20 percent TRAM flap). The need for alternative venous outflow vessels was usually due to a significant vessel size mismatch between the superior gluteal and internal mammary veins (74 percent). For three of the external jugular vein flaps (13 percent), the vein was used for salvage after the primary draining vein thrombosed, and two of three flaps in these cases were eventually salvaged. In three patients, the external jugular vein thrombosed, resulting in two flap losses, while the third was salvaged using the cephalic vein. A total of two flaps were lost in the external jugular vein group. The cephalic vein was used in 11 flaps (TRAM, 64.3 percent; superior gluteal, 35.7 percent) performed in 11 patients. In five patients (54.5 percent), the cephalic vein was used to salvage a flap after the primary draining vein thrombosed; the procedure was successful in four cases. In three patients, the cephalic vein thrombosed, resulting in two flap losses. One patient suffered a thrombosis after the cephalic vein was used to salvage a flap in which the external jugular vein was initially used, leading to flap loss, while a second patient experienced cephalic vein thrombosis on postoperative day 7 while carrying a heavy package. There was only one minor complication attributable to the harvest of the external jugular or cephalic vein (small neck hematoma that was aspirated), and the resultant scars were excellent. The external jugular and cephalic veins are important ancillary veins available for microvascular breast reconstruction. The dissection of these vessels is straightforward, and their use is well tolerated and highly successful.  相似文献   

6.
The extent of nonenzymatic glycosylation of collagen isolated from sheep carotid arteries and jugular veins was compared. It was found that the level of this modification in the arterial collagen was about 2.7 times higher than that in the venous collagen. Arteriovenous fistulae were established between the common carotid artery and external jugular vein on one side only of six sheep. Sham arteriotomy and phlebotomy were performed on the contralateral vessels. Although there was an increase in the concentration of these ketoamine-linked hexoses in all the tissue samples assayed, a difference of between two- and three-fold was maintained between the arterial and venous tissue. The relationship of this finding to the development of vascular complications and to the level of circulating reducing sugar is discussed.  相似文献   

7.
This investigation was undertaken to determine whether a Starling resistor or venous waterfall effect exists between the sagittal sinus and the cerebral veins such that increases in sagittal sinus pressure (Pss) do not abolish cerebral venous outflow and to examine two possible contributions of extracranial venous valves in regulating outflow. Anesthetized dogs were subjected to positive end-expiratory pressure (PEEP) before and after intracranial pressure (Pic) was elevated by inflation of an epidural balloon. PEEP raised Pss equally in all animals, but Pic and cerebral venous pressure (Pcv) increased less in the presence of intracranial hypertension. When Pss was low, passage of a catheter in the cerebral vein in and out of the sagittal sinus demonstrated an abrupt drop in pressure as the sinus was entered. When Pss was raised and lowered independently of superior vena caval pressure (Psvc) the changes in Pic and Pcv were less when Pss was decreased than when it was increased. Sustained increases and decreases in Psvc caused increases and decreases in Pcv, Pic, Pss, and external jugular venous pressure (Pejv) regardless of whether external jugular venous valves were present or absent. We conclude that a Starling resistor between the sagittal sinus and the cerebral veins regulates cerebral venous outflow when Pss is increased by PEEP and other maneuvers that raise Psvc. The waterfall maintains Pcv and Pic at normal levels when Psvc and Pss are reduced. Extracranial venous valves are not essential to this mechanism.  相似文献   

8.
Arteries are capable of producing significantly larger quantities of protacyclin than are veins. To test the hypothesis, whether prostacyclin production by the vessel wall is related to blood pressure and flow, we measured the amounts of PGI2 released and synthesized by venous segments transplanted for 6 weeks into the arterial circulation. These results were compared with the production of prostacyclin by normal veins and arteries. In 20 dogs a segment of jugular vein was interposed into the carotid system; a sham dissection was done on the opposite side. “Arterialized” vein grafts showed prominent intima lined by endothelium, medial smooth muscle cell proliferation and fibrotic proliferation in adventitia. Spontaneous and arachidonic acid- stimulated prostacyclin production (measured by radioimmunoassay for 6-keto-PGF) was not significantly different between arterialized venous autografts and jugular veins. Significantly larger amounts of prostacyclin were synthesized by the carotid artery. Thus, histologic changes and rheologic effects occurring in vein grafts transposed to the arterial site do not affect prostacyclin production.  相似文献   

9.
10.
Bathyergus suillus are subterranean rodents found in the Western Cape of South Africa, where they inhabit sandy, humid burrows. Vertebral venous plexuses around the vertebral column have been implicated in aiding the maintenance of a constant central nervous system temperature via its connections with muscles and interscapular brown adipose tissue. The morphology of the vertebral venous plexuses and its connections in B.suillus were investigated. Frozen (n = 10) animals were defrosted; the venous system injected with latex and the vertebral venous plexuses, azygos‐ and intercostal veins dissected along the dorsal and ventral aspects of the vertebral column. Specimens (n = 4) were used for histological serial cross sections of the thoracic vertebrae. Veins drained from the interscapular brown adipose tissue to the external vertebral venous plexus, via a dorsal vein at the spinous process of T2 which might represent the “vein of Sulzer” described in rats. The intercostal veins cranial to the level of T8 drained directly into the ventral external vertebral venous plexus instead of into the azygos vein as seen in rats. The azygos vein was situated ventrally on the thoracic vertebral bodies in the median plane as opposed to most rodents that have a left sided azygos vein. The internal vertebral venous plexus consisted of two ventrolateraly placed longitudinal veins in the spinal epidural space. Veins from the forelimbs entered the internal vertebral venous plexus directly at the levels of C7 and T1 and have not been described in other rodents. Serial histological sections, revealed no regulatory valves in vessels leading toward the internal vertebral venous plexus, allowing blood to presumably move in both directions within the vertebral venous plexus. The vertebral venous plexus of B. suillus shows similarities to that of the rat but the vessels from the forelimbs draining directly into to the internal vertebral venous plexus and the position of the azygos vein and the intercostal veins draining into the external vertebral venous plexus are notable exceptions. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The arrangement of the superficial facial veins enables blood flow from the nasal cavity into the peripheral circulation by two pathways: through the frontal vein into the cavernous sinus and through the facial vein into the external jugular vein. The current study was designed to determine whether estradiol and progesterone affect the vascular tone of the superficial veins of the nose and face in cycling gilts (Sus scrofa f. domestica) and to analyze the immunolocalization of progesterone receptors and estradiol receptors in these veins. The influence of hormones on vascular tension differed depending on the type of vessel and the phase of the estrous cycle. Estradiol decreased vascular tension in the nasal vein during the follicular phase (P < 0.05) and increased tension in the frontal vein during the luteal phase (P < 0.05). Progesterone increased the vascular tension of the frontal vein (P < 0.05) and decreased the tension of the other veins (P < 0.05) in both phases of the cycle. Expression of estradiol receptor β but not of progesterone receptor was observed in the superficial veins of the nose and face. In conclusion, the effect of ovarian steroid hormones on the vascular tension of the superficial veins of the nose and face in female pigs as well as the reactivity of these veins to steroid boar pheromones can affect the blood supply from the nasal cavity to the venous cavernous sinus. We propose that the ovarian steroid hormones that modulate the vascular tension of the nasal and facial veins may also influence the action of boar pheromones absorbed into the nasal mucosa in gilts and may reach the brain via local destination transfer.  相似文献   

12.
To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins.  相似文献   

13.
环颈雉胃的血供   总被引:9,自引:1,他引:8  
用血管铸型法和大体解剖学方法对环颈雉胃动脉的起源、分布及胃静脉的回流情况进行了解剖学研究。结果表明,环颈雉的胃动脉均由腹腔动脉分出;腺胃由腺胃背侧动脉和腺胃腹侧动脉营养,腺胃背侧动脉直接起自腹腔动态的左侧,腺胃腹侧动脉起自腹腔动脉左支。腺胃血液的静脉有腺胃前静脉和腺胃后静脉,分别汇入后腔静脉和左肝门静脉。肌胃由肌胃左动脉、肌胃右动脉和肌胃背侧动脉营养,肌胃左动脉起自腹腔动脉的左支;肌胃右动脉起自腹腔动脉的右支;肌胃背侧动脉从腺胃背动脉分支而来。回流肌胃血液的静脉有胃右静脉、胃左静脉和胃腹侧静脉;胃右静脉汇入右肝门静脉,胃左静脉和胃腹侧静脉汇入左肝门静脉。另外腺胃和肌胃的表面缺乏主干动脉间的吻合。  相似文献   

14.
R Shehata 《Acta anatomica》1979,105(1):61-64
The venous drainage of the urinary bladder was studied in 20 pelvic halves (14 males and 6 females). Vesical and prostatic plexuses draining the bladder (vesical only in females) were found in 16 cases; they supplied blood to the internal iliac vein--usually by two to five veins--the most common number being three. One vein always drained the prostatic plexus. The vesical and prostatic plexuses were absent in 4 male cases, where the vesical veins issuing from the bladder wall drained directly the internal iliac vein. Their number in such cases was minimal: between one and two only, on each side. The union of a vesical vein issuing from any of the two mentioned plexuses (when found) with the obturator, prostatic or vaginal vein was common. A shunt from a common trunk of united obturator and vesical veins to the external iliac vein was noticed in some cases. Occasionally, an inferior vesical vein ending in the obturator vein accompanied an inferior vesical artery initiating from the obturator artery.  相似文献   

15.
The vascularization of the telencephalic choroid plexus of the sterlet Acipenser ruthenus, a ganoid fish, was examined by vascular corrosion casting and by light and transmission electron microscopy. The arterial supply is from the dorsal mesencephalic artery via: 1) the ventral choroidal arteries (left and right); 2) the dorsal choroidal arteries (left and right); 3) the caudal choroidal arteries (left and right); 4) the ventral arteries of the dorsal sac; and, from the olfactory arteries, via 5) the rostral choroidal arteries. The venous drainage is mainly through a single main choroidal vein that can take various courses either directly to the anterior cardinal vein or via the middle cerebral vein to the anterior cardinal vein. To a lesser extent, the plexus is drained via the lateral telencephalic veins and the ventral vein of the dorsal sac to the middle cerebral vein. By angioarchitecture and form, the plexus can be subdivided into five distinct parts: the surface network, the median folds, the large lateral folds, the small lateral folds, and the area common to the bottom of the dorsal sac and the telencephalic plexus. Diameters of terminal vessels as measured from vascular corrosion casts and from paraplast, semithin, and ultrathin sections were never less than 10 micron. It is suggested that the different areas in one plexus may have different functions with respect to secretion and absorption of cerebrospinal fluid.  相似文献   

16.
We have found that pronghorn (Antilocapra americana) use external heat exchange with the environment and internal heat exchange between the carotid artery rete and cavernous venous sinus blood to regulate body temperature. Now we have investigated the relationship between the histological structure of the skin, cephalic veins, and carotid rete–cavernous sinus system and the physiological mechanisms pronghorn use, and whether their thermoregulatory anatomy has adaptive advantages. We harvested tissue samples of skin, three veins (i.e., angularis oculi vein, dorsal nasal vein, and facial vein), and the carotid rete–cavernous sinus system from four pronghorn, two culled in summer and two in winter, and examined each histologically. The three veins had the typical structure of veins with large lumina and thin walls. The carotid rete consisted of small (0.1–0.5 mm) arterioles with a density of ~10/mm2, intertwined with veins (~2/mm2), enclosed within the cavernous sinus; a structure ideal for heat exchange. We concluded that the main function of the dorsal nasal and facial veins is to return cold blood to the body to effect whole body cooling. The cavernous sinus is supplied with warm blood by the palatine veins in winter and cold blood by the deep facial veins in summer, an arrangement different to that in other ungulates, such as sheep, in which the angularis oculi vein supplies the cavernous sinus. Pronghorn skin is richly supplied with blood vessels that facilitate convective heat loss in summer. In winter, the number of coarse and fine hairs per square millimeter increases more than in European deer to form a thick pelage that minimizes heat loss. In summer, the pelage is shed because hair follicles involute. Unlike in other ungulates, pronghorn skin has little adipose tissue. The number of apocrine glands increases in winter rather than in summer. We concluded that the glands have a reproductive/social function rather than a thermoregulatory one. In summary, our study shows that the thermoregulatory anatomy is consistent with our physiological data and has adaptive advantages that help explain the survival of pronghorn in an arid habitat characterized by extreme temperature variation and sparse vegetation.  相似文献   

17.
Remodeling of the primary vascular system of the embryo into arteries and veins has long been thought to depend largely on the influence of hemodynamic forces. This view was recently challenged by the discovery of several molecules specifically expressed by arterial or venous endothelial cells. We here analysed the expression of neuropilin-1 and TIE2, two transmembrane receptors known to play a role in vascular development. In birds, neuropilin-1 was expressed by arterial endothelium and wall cells, but absent from veins. TIE2 was strongly expressed in embryonic veins, but only weakly transcribed in most arteries. To examine whether endothelial cells are committed to an arterial or venous fate once they express these specific receptors, we constructed quail-chick chimeras. The dorsal aorta, carotid artery and the cardinal and jugular veins were isolated together with the vessel wall from quail embryos between embryonic day 2 to 15 and grafted into the coelom of chick hosts. Until embryonic day 7, all grafts yielded endothelial cells that colonized both host arteries and veins. After embryonic day 7, endothelial plasticity was progressively lost and from embryonic day 11 grafts of arteries yielded endothelial cells that colonized only chick arteries and rarely reached the host veins, while grafts of jugular veins colonized mainly host veins. When isolated from the vessel wall, quail aortic endothelial cells from embryonic day 11 embryos were able to colonize both host arteries and veins. Our results show that despite the expression of arterial or venous markers the endothelium remains plastic with regard to arterial-venous differentiation until late in embryonic development and point to a role for the vessel wall in endothelial plasticity and vessel identity.  相似文献   

18.
The possibility of reverse perfusion of the brain (in which arterial blood flows to brain tissues through venous vessels, and venous blood is drained by the arteries) was studied in acute and chronic experiments on dogs. Blood pressure in cerebral veins could reach 90--120 mm Hg, in Willisii arteries it was 5--35 mm Hg. Liquor pressure reached 20--35 mmHg. After temporary arterialization of the brain venous system (10, 30 and 60 min) the animals survived without impairment of the brain function and behaviour. In the future reverse perfusion of the brain (in which blood pressure in the arteries falls to the level of venous pressure) could be used as a means of urgent surgical intervention in cases of threatened or beginning intracranial arterial hemorrhage.  相似文献   

19.
Ten rats were embalmed, the veins of the head latex-injected, and the heads were dissected. Five rats were used to prepare corrosion casts of the venous structures of the head. It was found that the rat has an orbital venous plexus rather than an orbital venous sinus as seen in the mouse and hamster. The orbital venous plexus was formed by the external dorsal ophthalmic vein, the external ventral ophthalmic vein and numerous anastomoses between these veins. Of major interest was a large anastomotic vein located in the caudaldorsal area of the orbit. The anastomotic vein joined the orbital venous plexus and the superficial temporal vein.  相似文献   

20.
The plasma concentration of the dopamine (DA) metabolite, homovanillic acid (HVA), is used as an indicator of central nervous system dopaminergic activity. Using percutaneously inserted catheters we were able to obtain blood samples simultaneously from the right and left internal jugular veins. Veno-arterial HVA plasma concentration differences combined with adjusted organ plasma flows were used, according to the Fick Principle, to determine the HVA overflow from the brain. The HVA overflow from the liver was also measured. HVA overflow from the brain represented 12% of the total body HVA production. A similar amount was released from the liver, illustrating the limited validity of peripheral plasma HVA measurements as an indicator of central dopaminergic activity. HVA release from the human brain displayed a degree of asymmetry, the overflow into the left internal jugular vein being 36% greater than that into the right. Cerebral venous blood flow scans indicated that cortical cerebral regions drained preferentially into the right internal jugular; by inference the higher HVA overflow on the left originated from dopamine-rich subcortical brain areas. Since HVA in plasma may arise from the metabolism of DA existing either as a neurotransmitter or a norepinephrine (NE) precursor we measured the internal jugular vein plasma concentrations of NE, and its metabolite dihydroxyphenylglycol (DHPG), to determine whether they displayed a similar pattern of release to HVA. The overflow of both NE and DHPG into the right internal jugular vein was approximately double that on the left. Since the overflow of HVA did not parallel that of NE and DHPG it may be inferred that the origin of much of the subcortically produced HVA is from dopaminergic neurons and not from the metabolism of precursor DA in noradrenergic neurones or cerebrovascular sympathetic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号