首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three double-stranded ribonucleic acid (dsRNA) segments of the bacteriophage phi6 were isolated and shown to have similar melting temperatures and base compositions. RNA:RNA hybridization experiments with the isolated segments eliminate the possibility that the two smaller dsRNA segments arise from a cleavage of the large dsRNA segment. The two smaller RNA segments reanneal rapidly even at low temperatures; in contrast, the large dsRNA reannealed only at higher temperatures. Evidence is also presented which suggests that the dsRNAs may contain a short single-stranded RNA tail.  相似文献   

2.
Xiao  Ming  Lu  Wenwei  Chen  Jun  Wang  Yujing  Zhen  Yamei  Chen  Jiakuan  Li  Bo 《Molecular Biology》2004,38(2):289-297
Classical swine fever virus (CSFV) is the causative agent of swine fever, which represents an economically important disease in hogs. We previously made a prediction about the recognition sites of replication initiation of CSFV by using the information content method, and it was predicted that the 21 nucleotides located at the 3 end of the CSFV genome 3UTR were essential to CSFV replication. In this paper, we experimentally studied these 21 nucleotides by site-directed mutagenesis. It was found that the 3UTRs with the 21 nucleotides could initiate RNA synthesis, while the 3UTRs without the 21 nucleotides could not. The 21 nucleotides alone, without the rest of 3UTR, were able to initiate RNA synthesis, though with a slump. Most probably the 21 nucleotides were the necessary site for the CSFV genome replication initiation, and the elements required for sufficient RNA synthesis were in the other part of 3UTR. It was assumed that the CSFV replicase bound to the site and initiated the replication of the CSFV genome. In the 21 nucleotides, it was found that the mutation of position 216 and destruction of the 3 terminus in the 3UTR precluded initiation of RNA synthesis, where the mutation of position 212 did not affect the capacity for initiation of RNA synthesis but attenuated the synthesis of RNA. Among the four mutants of 3UTR at position 219, three proved inactive and one partly active in initiating RNA synthesis. Therefore, it could be concluded that T216 was the most important while T212 was the least important, and that G219 and C228 were also important for RNA synthesis.  相似文献   

3.
The structure of the Leviviridae bacteriophage φCb5 virus-like particle has been determined at 2.9 Å resolution and the structure of the native bacteriophage φCb5 at 3.6 Å. The structures of the coat protein shell appear to be identical, while differences are found in the organization of the density corresponding to the RNA. The capsid is built of coat protein dimers and in shape corresponds to a truncated icosahedron with T = 3 quasi-symmetry. The capsid is stabilized by four calcium ions per icosahedral asymmetric unit. One is located at the symmetry axis relating the quasi-3-fold related subunits and is part of an elaborate network of hydrogen bonds stabilizing the interface. The remaining calcium ions stabilize the contacts within the coat protein dimer. The stability of the φCb5 particles decreases when calcium ions are chelated with EDTA. In contrast to other leviviruses, φCb5 particles are destabilized in solution with elevated salt concentration. The model of the φCb5 capsid provides an explanation of the salt-induced destabilization of φCb5, since hydrogen bonds, salt bridges and calcium ions have important roles in the intersubunit interactions.Electron density of three putative RNA nucleotides per icosahedral asymmetric unit has been observed in the φCb5 structure. The nucleotides mediate contacts between the two subunits forming a dimer and a third subunit in another dimer. We suggest a model for φCb5 capsid assembly in which addition of coat protein dimers to the forming capsid is facilitated by interaction with the RNA genome. The φCb5 structure is the first example in the levivirus family that provides insight into the mechanism by which the genome-coat protein interaction may accelerate the capsid assembly and increase capsid stability.  相似文献   

4.
The double-stranded RNA bacteriophage ϕ6 is an extensively studied prokaryotic model system for virus assembly. There are established in vitro assembly protocols available for the ϕ6 system for obtaining infectious particles from purified protein and RNA constituents. The polymerase complex is a multifunctional nanomachine that replicates, transcribes, and translocates viral RNA molecules in a highly specific manner. The complex is composed of (i) the major structural protein (P1), forming a T=1 icosahedral lattice with two protein subunits in the icosahedral asymmetric unit; (ii) the RNA-dependent RNA polymerase (P2); (iii) the hexameric packaging nucleoside triphosphatase (NTPase) (P4); and (iv) the assembly cofactor (P7). In this study, we analyzed several ϕ6 virions and recombinant polymerase complexes to investigate the relative copy numbers of P2, P4, and P7, and we applied saturated concentrations of these proteins in the self-assembly system to probe their maximal numbers of binding sites in the P1 shell. Biochemical quantitation confirmed that the composition of the recombinant particles was similar to that of the virion cores. By including a high concentration of P2 or P7 in the self-assembly reaction mix, we observed that the numbers of these proteins in the resulting particles could be increased beyond those observed in the virion. Our results also suggest a previously unidentified P2-P7 dependency in the assembly reaction. Furthermore, it appeared that P4 must initially be incorporated at each, or a majority, of the 5-fold symmetry positions of the P1 shell for particle assembly. Although required for nucleation, excess P4 resulted in slower assembly kinetics.  相似文献   

5.
6.
The Pseudomonas phaseolicola bacteriophage phi6 incorporated labeled UTP into an acid-insoluble precipitate. Incorporation was dependent on the presence of manganese acetate, ATP, GTP, CTP, and a short heat treatment of the phage; the reaction was stimulated by NH(4)Cl. The substitution of (14)C-ATP, -CTP or -GTP for UTP, together with the appropriate unlabeled ribonucleoside triphosphates, disclosed that CMP was incorporated to the greatest extent followed by GMP, UMP, and AMP. Radioactive RNAs formed by the reaction were resistant to RNases A and T(1) in high salt but susceptible to these nucleases in low salt. The labeled RNA co-sedimented and co-electrophoresed with phi6 double-stranded (ds) RNA. However, the distribution of the radioactivity into the three ds-RNA components varied depending on the (14)C-ribonucleoside triphosphate used in the reaction. The incorporation of UMP was primarily into the two smaller ds-RNA segments, GMP primarily into the large ds-RNA segment, and CMP and AMP were about equally distributed into all three ds-RNA segments.  相似文献   

7.
In the late phase of φX174 infection, DNA was pulse-labeled and the incorporated label in RF II was chased. In resting RF II as well as active RF II there existed short DNA chains smaller than one-unit length of a linear φX174 DNA. The molecular sizes varied from 5 to 12 s as sedimented through sucrose gradients in alkaline conditions. Possible mechanisms of synthesis of φX174 progeny DNA are discussed.  相似文献   

8.
9.
The acute phases of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection are characterized by rapid and profound depletion of CD4+ T cells from the guts of infected individuals. The large number of CD4+ T cells in the gut (a large fraction of which are activated and express the HIV/SIV coreceptor CCR5), the high level of infection of these cells, and the temporal coincidence of this CD4+ T-cell depletion with the peak of virus in plasma in acute infection suggest that the intestinal mucosa may be the major source of virus driving the peak viral load. Here, we used data on CD4+ T-cell proportions in the lamina propria of the rectums of SIV-infected rhesus macaques (which progress to AIDS) and sooty mangabeys (which do not progress) to show that in both species, the depletion of CD4+ T cells from this mucosal site and its maximum loss rate are often observed several days before the peak in viral load, with few CD4+ T cells remaining in the rectum by the time of peak viral load. In contrast, the maximum loss rate of CD4+ T cells from bronchoalveolar lavage specimens and lymph nodes coincides with the peak in virus. Analysis of the kinetics of depletion suggests that, in both rhesus macaques and sooty mangabeys, CD4+ T cells in the intestinal mucosa are a highly susceptible population for infection but not a major source of plasma virus in acute SIV infection.The acute phase of human immunodeficiency virus (HIV) infection is characterized by moderate CD4+ T-cell depletion in blood, followed by a transient partial restoration of CD4+ T-cell numbers and eventually by a slow long-term CD4+ T-cell decline in the chronic phase that lasts for several years. Studies of CD4+ T-cell depletion in mucosal sites, often conducted with simian immunodeficiency virus (SIV)-infected macaques, have demonstrated that mucosal CD4+ T-cell depletion is more rapid and profound (3, 10, 13, 19, 21). The severe depletion of cells in the gut in early infection is thought to be driven in part by the phenotype of the cells present, which are predominantly CCR5+ and in general more activated than their circulating counterparts. As such, these mucosal CD4+ T cells are highly susceptible to productive infection with the dominant CCR5-tropic strains of HIV and SIV present in early infection (20). The rapid depletion of CD4+ T cells at mucosal sites is accompanied by relatively high numbers of infected cells (10, 13) and is temporally associated with the peak viral load in plasma, suggesting that the infection of mucosal CD4+ T cells may be responsible for the majority of virus replication occurring during acute infection (10, 15, 21, 22).The size of the CD4+ T-cell pool in the gut is a matter of some controversy, with estimates ranging from ∼5 to 50% of the total body pool of these cells (reviewed in reference 5). Regardless of the precise numbers, the gut (and particularly the mucosal lamina propria) contains a significant proportion of the body CD4+ CCR5+ memory T cells, which are depleted very early in infection. However, whether CD4+ T cells in the gut are merely a target of early infection or whether they are a major driver of early viral growth and peak viral loads in acute infection is unclear. Here we use a combination of experimental data and modeling to demonstrate that the gut is unlikely to be a major source of virus production in acute SIV infection.  相似文献   

10.
Dengue virus (DENV) is a member of the Flavivirus genus of positive-sense RNA viruses. DENV RNA replication requires cyclization of the viral genome mediated by two pairs of complementary sequences in the 5′ and 3′ ends, designated 5′ and 3′ cyclization sequences (5′-3′ CS) and the 5′ and 3′ upstream of AUG region (5′-3′ UAR). Here, we demonstrate that another stretch of six nucleotides in the 5′ end is involved in DENV replication and possibly genome cyclization. This new sequence is located downstream of the AUG, designated the 5′ downstream AUG region (5′ DAR); the motif predicted to be complementary in the 3′ end is termed the 3′ DAR. In addition to the UAR, CS and DAR motifs, two other RNA elements are located at the 5′ end of the viral RNA: the 5′ stem-loop A (5′ SLA) interacts with the viral RNA-dependent RNA polymerase and promotes RNA synthesis, and a stem-loop in the coding region named cHP is involved in translation start site selection as well as RNA replication. We analyzed the interplay of these 5′ RNA elements in relation to RNA replication, and our data indicate that two separate functional units are formed; one consists of the SLA, and the other includes the UAR, DAR, cHP, and CS elements. The SLA must be located at the 5′ end of the genome, whereas the position of the second unit is more flexible. We also show that the UAR, DAR, cHP, and CS must act in concert and therefore likely function together to form the tertiary RNA structure of the circularized DENV genome.Dengue virus (DENV), a member of the Flaviviridae family, is a human pathogen causing dengue fever, the most common mosquito-borne viral disease in humans. The virus has become a major international public health concern, with 3 billion people at risk for infection and an estimated 50 million dengue cases worldwide every year (28). Neither specific antiviral therapies nor licensed vaccines are available, and the biology of the virus is poorly understood.DENV is a small enveloped virus containing a positive-stranded RNA genome with a length of approximately 10.7 kb. The virus encodes one large polyprotein that is co- and posttranslationally cleaved into 10 viral proteins. The structural proteins C, prM/M, and E are located in the N terminus, followed by the nonstructural proteins NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (6, 10). NS5, the largest of the viral proteins, functions as an RNA-dependent RNA polymerase (RdRP) (29). The coding region is flanked at both ends by untranslated regions (UTR). The 5′ end has a type I cap structure (m7GpppAmp) mediating cap-dependent translation, but the virus can switch to a noncanonical translation mechanism under conditions in which translation factors are limiting (13). Cellular mRNAs are known to circularize via a protein-protein bridge between eIF4G and eIF4E (the cap binding complex) at the 5′ end and the poly(A) binding protein (PABP) at the 3′ end, enhancing translation efficiency. Despite the fact that the DENV 3′ UTR lacks a poly(A) tail, recent findings demonstrated binding of PABP to the 3′ UTR and an effect on RNA translation, suggesting a similar mechanism (12, 26).In addition to a presumed protein-mediated genome circularization regulating viral translation, an RNA-RNA-based 5′ and 3′ (5′-3′) end interaction, which can occur in the absence of proteins, leads to circularization of the viral genome (1, 3, 4, 18, 20, 30, 33, 34). This cyclization of the genome is necessary for viral RNA replication, and thus far, two complementary sequences at the 5′ and 3′ ends have been identified (3). The first are the cyclization sequences (CS) present in the capsid-coding region at the 5′ end (5′ CS) and upstream of the 3′ stem-loop (3′ SL) in the 3′ UTR (3′ CS) (2, 4, 18, 20, 30). A second sequence, known as the 5′ upstream AUG region (5′ UAR) element in the 5′ UTR, base pairs with its complementary 3′ UAR counterpart, which is located at the bottom part of 3′ SL (1, 4, 30). Recently, the structure of the 5′ end of the DENV genome hybridized to the 3′ end was determined in solution (25), confirming previous computer-predicted structures for genome cyclization (4, 20, 30). Besides the base pairing between 5′-3′ UAR and 5′-3′ CS sequences, a third stretch of nucleotides was identified to form a double-stranded (ds) region between the 5′ and 3′ ends.In addition to RNA sequences involved in 5′-3′-end interactions that are necessary for cyclization, the 5′ end of the viral genome harbors at least two more functional RNA elements, the stem-loop A (SLA) and capsid-coding region hairpin (cHP). The SLA consists of the first 70 nucleotides (nt) of the genome, forming a stable stem-loop structure. This structure has been confirmed in several studies and identified as a promoter element for RNA synthesis that recruits the viral RdRp NS5 (16, 22). Once NS5 is bound to the SLA at the 5′ end, it is believed to be delivered to the initiation site of minus-strand RNA synthesis at the 3′ end via 5′-3′ RNA-RNA circularization. In addition, a short poly(U) tract located immediately downstream of SLA has been shown to be necessary for RNA synthesis, although it is not involved in genome circularization (22). Finally, the cHP element resides within the capsid-coding region; it directs start codon selection and is essential for RNA replication (8, 9). The cHP structure is more important than its primary sequence. For start codon selection, it is believed that the cHP stalls the scanning initiation complex over the first AUG, favoring its recognition (9). In the case of RNA replication, the cHP likely stabilizes the overall 5′-3′ panhandle structure or participates in recruitment of factors associated with the replicase machinery (8).In this study, we demonstrate that in addition to the 5′ CS and 5′ UAR sequences, a third stretch of nucleotides in the 5′ end is required for RNA replication and appears to be involved in genome circularization. This new motif is located downstream of the AUG and was therefore designated the downstream AUG region (5′ DAR) element, with the predicted counterpart in the 3′ end designated the 3′ DAR. Our results indicate that the 5′ DAR modulates RNA-RNA interaction and RNA replication, and restoring complementarity between the 5′ DAR and 3′ DAR rescues detrimental effects caused by mutations in the 5′ DAR on genome circularization and RNA replication. Although the role of the predicted 3′ DAR counterpart is less conclusive, it may serve to make other structures and sequences in the 3′ end available for 5′-3′ RNA-RNA interaction to facilitate the replication-competent conformation of the DENV genome.Furthermore, we analyzed the functional interplay of RNA elements in the viral 5′ end, showing that two separate units are formed during replication. The first consists of the SLA, and it must be located at the very 5′ end of the genome. The second unit includes UAR, DAR, cHP, and CS elements, and the positional requirements are more flexible within the DENV RNA 5′ terminus. However, all four elements in the second unit must act in concert, forming a functional tertiary RNA structure of the circularized viral genome.  相似文献   

11.
12.
13.
14.

Background

In Hepatitis C virus (HCV) mono-infection, male sex is associated with faster liver fibrosis progression but the effects of sex have not been well studied in HIV-HCV co-infected patients. We examined the influence of sex on progression to significant liver fibrosis in HIV-HCV co-infected adults receiving antiretroviral therapy (ART) using the aspartate aminotransferase-to-platelet ratio index (APRI) as a surrogate biomarker of liver fibrosis.

Methods

We evaluated 308 HIV infected, HCV RNA positive participants of a Canadian multicentre prospective cohort receiving antiretrovirals and without significant liver fibrosis or end-stage liver disease at baseline. We used multivariate discrete-time proportional hazards models to assess the effect of sex on time to significant fibrosis (APRI≥1.5) adjusting for baseline age, alcohol use, cigarette smoking, HCV duration, and APRI and time-updated CD4 count and HIV RNA.

Results

Overall, 55 (18%) participants developed an APRI ≥ 1.5 over 544 person-years of at-risk follow-up time; 18 (21%) women (incidence rate (IR)=14.0/100 PY; 7.5-20.4) and 37 (17%) men (IR=8.9/100 PY; 6.0-11.8). Women had more favourable profiles with respect to traditional risk factors for liver disease progression (younger, shorter duration of HCV infection and less alcohol use). Despite this, female sex was associated with a greater than two-fold increased risk of fibrosis progression (adjusted hazard rate (HR) =2.23; 1.22-4.08).

Conclusions

HIV-HCV co-infected women receiving antiretroviral therapy were at significantly greater risk of progressing to liver fibrosis as measured by APRI compared with men. Enhanced efforts to engage and treat co-infected women for HCV are needed.  相似文献   

15.
16.
In the DNA of bacteriophage W-14, half the thymine is replaced by a -putrescinylthymine (putThy). Analysis of monopyrimidine tracts shows that putThy and thymine are distributed nonrandomly in W-14 DNA: The sequence purine-putThy-purine occurs more than twice as frequently as the sequence purine-thymine-purine, which means that the post-replicative modification of W-14 DNA is sequence-specific.  相似文献   

17.
Although information regarding morphogenesis of the hepatitis C virus (HCV) is accumulating, the mechanism(s) by which the HCV genome encapsidated remains unknown. In the present study, in cell cultures producing HCV, the molecular ratios of 3’ end- to 5’ end-regions of the viral RNA population in the culture medium were markedly higher than those in the cells, and the ratio was highest in the virion-rich fraction. The interaction of the 3’ untranslated region (UTR) with Core in vitro was stronger than that of the interaction of other stable RNA structure elements across the HCV genome. A foreign gene flanked by the 3’ UTR was encapsidated by supplying both viral NS3-NS5B proteins and Core-NS2 in trans. Mutations within the conserved stem-loops of the 3’ UTR were observed to dramatically diminish packaging efficiency, suggesting that the conserved apical motifs of the 3´ X region are important for HCV genome packaging. This study provides evidence of selective packaging of the HCV genome into viral particles and identified that the 3’ UTR acts as a cis-acting element for encapsidation.  相似文献   

18.
The complete nucleotide sequence of the DNA of bacteriophage φX174 has been determined. The provisional sequence (Sanger et al., 1977a) deduced largely by the plus and minus method, has been completed and confirmed, predominantly using the terminator method (Sanger et al., 1977b). About 30 revisions were found to be necessary in the 5386-nucleotide sequence. The amino acid sequences of the ten proteins for which the DNA codes have also been deduced.  相似文献   

19.
The objective of this study was to determine the location of protein P7, the RNA packaging factor, in the procapsid of the φ6 cystovirus. A comparison of cryo-electron microscopy high-resolution single particle reconstructions of the φ6 complete unexpanded procapsid, the protein P2-minus procapsid (P2 is the RNA directed RNA-polymerase), and the P7-minus procapsid, show that prior to RNA packaging the P7 protein is located near the three-fold axis of symmetry. Difference maps highlight the precise position of P7 and demonstrate that in P7-minus particles the P2 proteins are less localized with reduced densities at the three-fold axes. We propose that P7 performs the mechanical function of stabilizing P2 on the inner protein P1 shell which ensures that entering viral single-stranded RNA is replicated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号