首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Some experimental procedures are associated with placement of animals in wire-bottom cages. The goal of this study was to evaluate stress-related physiological parameters (heart rate [HR], body temperature [BT], locomotor activity [LA], body weight [BW] and food consumption) in rats under two housing conditions, namely in wire-bottom cages and in bedding-bottom cages. Telemetry devices were surgically implanted in male Sprague-Dawley rats. HR, BT and LA were recorded at 5 min intervals. Analysis under each housing condition was performed from 16:00 to 08:00 h of the following day (4 h light, 12 h dark). During almost all of the light phase, the HR of rats housed in wire-bottom cages remained high (371 ± 35 bpm; mean ± SD; n = 6) and was significantly different from that of rats housed in bedding-bottom cages (340 ± 29 bpm; n = 6; P < 0.001; Student's t-test). In general, BT was similar under the two housing conditions. However, when rats were in wire-bottom cages, BT tended to fluctuate more widely during the dark phase. LA decreased when animals were housed in wire-bottom cages, in particular during the dark phase. Moreover, there was a significant difference with respect to the gain in BW: BW of rats housed in bedding-bottom cages increased 12 ± 2 g, whereas that of rats in wire-bottom cages decreased by 2 ± 3 g (P < 0.001). Our results demonstrate that housing rats in wire-bottom cages overnight leads to immediate alterations of HR, BW and LA, which might be related to a stress response.  相似文献   

2.
We studied characteristics of the daily pattern of heart rate (HR), blood pressure (BP), body temperature (BT), and locomotor activity (LA) in conscious and unrestrained Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits and age-matched normal Japanese white (JW) rabbits, using a telemetry system. In all JW rabbits, nocturnal patterns were observed in HR, BT and LA. In the 5 months group of KHC rabbits, however, diurnal rhythm was observed in HR, and in the 10 months group of KHC rabbits, it was also shown in LA. The nocturnal pattern was observed only in BT in 10 months KHC rabbits. Mean blood pressure (MBP) in JW and KHC rabbits showed no clear daily pattern. The mean daily values of HR and BT were not altered between the 5 months and 10 months groups in KHC rabbits, although those in JW were lower in the 10 months group than in the 5 months group. Moreover, the daily values of HR and MBP in KHC rabbits tended to be higher than those in the age-matched JW rabbits. The pulse pressure in the 10 months group of KHC rabbits tended to be greater than the 5 months groups of KHC and JW rabbits. Furthermore, short-term variabilities in BP in the 5 months KHC rabbits were significantly lower than those in the other groups. From these results, it is suggested that the cardiovascular function, including the autonomic nervous function is altered with the development of atherosclerosis in KHC rabbits.  相似文献   

3.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.  相似文献   

4.
Local cooling (LC) causes a cutaneous vasoconstriction (VC). In this study, we tested whether there is a mechanism that links LC to VC nerve function via sensory nerves. Six subjects participated. Local skin and body temperatures were controlled with Peltier probe holders and water-perfused suits, respectively. Skin blood flow at four forearm sites was monitored by laser-Doppler flowmetry with the following treatments: untreated control, pretreatment with local anesthesia (LA) blocking sensory nerve function, pretreatment with bretylium tosylate (BT) blocking VC nerve function, and pretreatment with both LA and BT. Local skin temperature was slowly reduced from 34 to 29 degrees C at all four sites. Both sites treated with LA produced an increase in cutaneous vascular conductance (CVC) early in the LC process (64 +/- 55%, LA only; 42 +/- 14% LA plus BT; P < 0.05), which was absent at the control and BT-only sites (5 +/- 8 and 6 +/- 8%, respectively; P > 0.05). As cooling continued, there were significant reductions in CVC at all sites (P < 0.05). At control and LA-only sites, CVC decreased by 39 +/- 4 and 46 +/- 8% of the original baseline values, which were significantly (P < 0.05) more than the reductions in CVC at the sites treated with BT and BT plus LA (-26 +/- 8 and -22 +/- 6%). Because LA affected only the short-term response to LC, either alone or in the presence of BT, we conclude that sensory nerves are involved early in the VC response to LC, but not for either adrenergic or nonadrenergic VC with longer term LC.  相似文献   

5.
The purpose of this study was to evaluate the possible differences in the postexercise cutaneous vasodilatory response between men and women. Fourteen subjects (7 men and 7 women) of similar age, body composition, and fitness status remained seated resting for 15 min or cycled for 15 min at 70% of peak oxygen consumption followed by 15 min of seated recovery. Subjects then donned a liquid-conditioned suit. Mean skin temperature was clamped at approximately 34 degrees C for 15 min. Mean skin temperature was then increased at a rate of 4.3 +/- 0.8 degrees C/h while local skin temperature was clamped at 34 degrees C. Skin blood flow was measured continuously at two forearm skin sites, one with (UT) and without (BT) (treated with bretylium tosylate) intact alpha-adrenergic vasoconstrictor activity. The exercise threshold for cutaneous vasodilation in women (37.51 +/- 0.08 degrees C and 37.58 +/- 0.04 degrees C for UT and BT, respectively) was greater than that measured in men (37.33 +/- 0.06 degrees C and 37.35 +/- 0.06 degrees C for UT and BT, respectively) (P < 0.05). Core temperatures were similar to baseline before the start of whole body warming for all conditions. Postexercise heart rate (HR) for the men (77 +/- 4 beats/min) and women (87 +/- 6 beats/min) were elevated above baseline (61 +/- 3 and 68 +/- 4 beats/min for men and women, respectively), whereas mean arterial pressure (MAP) for the men (84 +/- 3 mmHg) and women (79 +/- 3 mmHg) was reduced from baseline (93 +/- 3 and 93 +/- 4 mmHg for men and women, respectively) (P < 0.05). A greater increase in HR and a greater decrease in the MAP postexercise were noted in women (P < 0.05). No differences in core temperature, HR, and MAP were measured in the no-exercise trial. The postexercise threshold for cutaneous vasodilation measured at the UT and BT sites for men (37.15 +/- 0.03 degrees C and 37.16 +/- 0.04 degrees C, respectively) and women (37.36 +/- 0.05 degrees C and 37.42 +/- 0.03 degrees C, respectively) were elevated above no exercise (36.94 +/- 0.07 degrees C and 36.97 +/- 0.05 degrees C for men and 36.99 +/- 0.09 degrees C and 37.03 +/- 0.11 degrees C for women for the UT and BT sites, respectively) (P < 0.05). A difference in the magnitude of the thresholds was measured between women and men (P < 0.05). We conclude that women have a greater postexercise onset threshold for cutaneous vasodilation than do men and that the primary mechanism influencing the difference between men and women in postexercise skin blood flow is likely the result of an altered active vasodilatory response and not an increase in adrenergic vasoconstrictor tone.  相似文献   

6.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.  相似文献   

7.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), and locomotor activity (LA) in conscious and unrestrained guinea pigs using a telemetry system. HR and/or LA in some guinea pigs clearly showed circadian rhythms, but in others there were no significant daily patterns; BT did not show significant daily rhythms. These results suggest that guinea pigs might have different individual characteristics of rhythmicity, and we should, therefore, be careful when using guinea pigs in chrono-biomedical research. We believe that the results of this study may be useful for future biomedical studies using guinea pigs.  相似文献   

8.
This study was investigated the roles of interleukin-1 (IL-1) on diurnal rhythms of heart rate (HR), locomotor activity (LA), and body temperature (BT). For this purpose, HR, LA, and BT were recorded from conscious and unrestrained IL-1 alpha/beta doubly deficient (KO) and normal C57BL/6J mice using a telemetry system. These parameters were continuously recorded from just after to 2 weeks after transmitter implantation, because we thought that the surgical stress-induced IL-1 might affect the biobehavioral activities of the animals. At 1 day after implantation, HR and LA in IL-1 alpha/beta KO mice were higher than those in C57BL/6J mice. While BT in IL-1 alpha/beta KO mice was lower than that in C57BL/6J mice. Moreover, diurnal rhythmicity in these parameters after implantation in IL-1 alpha/beta KO mice appeared earlier than in C57BL/6J mice. At 2 weeks after implantation, there were no significant differences in the light- and dark-phase values of each parameter between IL-1 alpha/beta KO and C57BL/6J mice, however, IL-1 alpha/beta KO mice showed clear ultradian rhythmicity. It is thought that a phenotypical difference in biobehavioral activities between IL-1 alpha/beta KO and C57BL/6J mice may reflect IL-1 induced febrile and behavioral responses. These results suggest that IL-1 may play important physiological and pathophysiological roles on biobehavioral activities.  相似文献   

9.
Twenty-four hour patterns of body temperature (BT) were recorded during consecutive 3-10 day spans from 14 severely brain-damaged patients. Seven patients exhibited a normal circadian BT rhythm with an amplitude of more than 1°C and a normal phase position of the minimum BT being observed during the latter half of the nocturnal sleep. One patient with a dispersed type of sleep exhibited an extremely low amplitude of the BT rhythm with mean average 0.69°C. In this patient, an 24-hr observation span was insufficient to detect the existence of a BT rhythm. Two patients manifested disturbance of period. As acrophase of the BT rhythm varied from day to day, the standard deviation (S.D.) of mean acrophase wasextremely large. For these patients the light-dark cycle did not act as an entrainer because both had visual disturbance. A phase advance of the minimum BT was observed in four patients. The minimum BT appeared in the first half of nocturnal sleep. These three disturbances (amplitude, period and phase), were revealed only by longitudinal observation of the BT rhythm, indicating the importance of long-term observations over a sufficient period to make the nature of the rhythm disturbances clear. These disturbances were not related to that of the sleep-wake cycle, as two patients showed normal circadian BT rhythm in spite of their dispersed-type sleep.  相似文献   

10.
We report a progressive disruption of 24-h rhythms in fasting blood glucose (FBG), body temperature (BT) and heart rate (HR) associated with metabolic dysfunction and the development of prediabetes (PD) and type 2 diabetes mellitus (T2DM) in overweight middle-aged (40–69 years old) humans. Increasing BT and HR mean values and declining 24-h BT and HR amplitudes accompany adverse changes in metabolic state. Increased nocturnal BT and a phase delay of the 24-h BT rhythm, deviant 24-h HR profile and a phase advance of the 24-h HR and FBG rhythms are early signs of the PD metabolic state. In T2DM, the 24-h FBG rhythm is no longer detectable, and the 24-h amplitudes of BT and HR are greatly diminished. In addition, lepton and creatinine values were lowered in T2DM. Moreover, positive correlations between FBG and body mass index, BMI, and negative correlations between the 24-h amplitude of FBG and BMI indicate that overweight is an additional factor causing disruption of the circadian rhythms. Further studies on circadian disruption as a consequence of metabolic dysfunction are necessary. The quantitative analysis of changing circadian BT and HR rhythms may provide prognostic markers of T2DM and therapeutic targets for its prevention and correction.  相似文献   

11.
ABSTRACT: BACKGROUND: Although passive walking-like leg movement in the standing posture (PWM) has been used in the clinical field, the safety of PWM has not been fully determined despite the risks of orthostatic intolerance due to standing posture. The aim of the present study was to examine cardiocirculatory response during PWM in healthy young men. METHODS: The subjects (n = 13) spent 5 min in a sitting position and then 5 min in a quiet standing position to determine baseline levels. Thereafter, they underwent 25-min rhythmic PWM at 1 Hz while standing. In another bout, subjects experienced the same protocol except that they underwent 25-min quiet standing (QS) instead of 25-min PWM. Two subjects dropped out of the 25-min QS due to feeling of discomfort. Thus, data obtained in the remaining eleven subjects are presented. RESULTS: In the PWM trial, systolic arterial blood pressure (SAP) decreased from 112 +/- 8 mmHg during the sitting baseline period to 107 +/- 8 mmHg during the standing baseline period (p <0.05), while heart rate (HR) increased from 73 +/- 9 bpm during the sitting baseline period to 84 +/- 10 bpm during the standing baseline period (p <0.001). After the imposition of PWM, SAP increased from 107 +/- 8 mmHg in the standing baseline period to 120 +/- 6 mmHg (p <0.001), while HR decreased from 84 +/- 10 bpm in the standing baseline period to 76 +/- 9 bpm (p <0.05). In the QS trial, SAP, which had decreased during the standing baseline period compared to that during the sitting baseline period, remained lowered during the 25-min QS period, while HR, which had increased during the standing baseline period compared to that during the sitting baseline period, remained elevated during the 25-min QS period. In both bouts, HR showed almost mirror-image changes in the high-frequency component of HR variability, suggesting that the changes in HR were due to change in parasympathetic activation. Double product (HR x SAP), as a predictor of myocardial oxygen consumption, during the 25-min QS period tended to increase with time, but double product remained almost constant during the 25-min PWM period. CONCLUSIONS: The results suggest that PWM is effective for suppressing cardiocirculatory responses to orthostatic stress.  相似文献   

12.
13.
Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.  相似文献   

14.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild‐type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock‐out mice (eNOS‐/‐) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12∶12 h of a light:dark cycle (LD), under free‐run in total darkness (DD), and after a phase delay shift of the LD cycle by ?6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS‐/‐ mice, resulting in a significantly greater amplitude. The period of the free‐running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS‐/‐ than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5–6 days, and resynchronization of MA occurred within 2–3 days. The results in telemetrically instrumented mice show that complete knock‐out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS‐/‐ mice.  相似文献   

15.
Radiotelemetry provides an alternative means of obtaining physiological measurements from conscious and freely moving animals, without introducing stress artefacts. A surgical procedure is described for implanting radiotelemetry transmitters to monitor the electrocardiogram (ECG), heart rate (HR) and body temperature (BT) in small goldfish (Carassius auratus; 50-100 g) and Prussian carp (Carassius auratus gibelio; 100 g). This type of transmitter is commonly implanted in freely moving mice. After surgery and a recovery period of 24 h, the ECG, HR and BT were recorded in freely swimming fish within the limitations of the aquarium.  相似文献   

16.
Abstract

Deep body temperature (DBT) and heart rate (HR) circadian rhythms were determined by radiotelemetry in 4 mares kept under controlled light and temperature conditions. Ovulations were determined by rectal palpation of their ovaries. Mean DBT values ranged from 35.85 ± .04 to 37.22 ± .02°C The circadian range of oscillation was extremely low, approximately 0.5° C, with time of maximum temperature occurring midway through the dark period. Mean HR values ranged from 36.4 ± 1.7 to 53.0 ±3.6 beats per min. The circadian range of oscillation was also low, less than 15 beats per min with time of maximum HR occurring approximately at the time of lights off. The HR circacadian rhythm peaked before the DBT circadian rhythm by 3 to 8 hrs. Ovulation did not appear to consistently affect DBT and HR circadian rhythms or their phase relationships.  相似文献   

17.
The purpose of this study was to examine the effects of skin cooling and heating on the heart rate (HR) control by the arterial baroreflex in humans. The subjects were 15 healthy men who underwent whole body thermal stress (esophageal temperatures, approximately 36.8 and approximately 37.0 degrees C; mean skin temperatures, approximately 26.4 and approximately 37.7 degrees C, in skin cooling and heating, respectively) produced by a cool or hot water-perfused suit during supine rest. The overall arterial baroreflex sensitivity in the HR control was calculated from spontaneous changes in beat-to-beat arterial pressure and HR during normothermic control and thermal stress periods. The carotid baroreflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure, calculated as mean arterial pressure minus neck pressure. The overall arterial baroreflex sensitivity at existing arterial pressure increased during cooling (-1.32 +/- 0.25 vs. -2.13 +/- 0.20 beats. min(-1). mmHg(-1) in the control and cooling periods, respectively, P < 0.05), whereas it did not change significantly during heating (-1.39 +/- 0. 23 vs. -1.40 +/- 0.15 beats. min(-1). mmHg(-1) in the control and heating periods, respectively). Neither the cool nor heat loadings altered the carotid baroreflex sensitivity in the HR control. These results suggest that the sensitivity of HR control by the extracarotid (presumably aortic) baroreflex was augmented by whole body skin cooling, whereas the sensitivities of HR control by arterial baroreflex remain unchanged during mild whole body heating in humans.  相似文献   

18.
Leaf resistance (RL) of Kalanchoe blossfeldiana to water vapor transfer was determined with a resistance hygrometer. The diurnal leaf-resistance change followed a normal pattern (i.e., low in light and higher in dark) when plants were pretreated with cool thermoperiods or with thermoperiods having little diurnal temperature fluctuation. Large diurnal temperature fluctuations (30-18, 26-15 C) resulted in apparent nocturnal stomatal opening. Nocturnal stomatal opening was more apparent than real since leaf-resistance measurements indicated day stomatal closing rather than complete night opening. Low nocturnal leaf resistances ( < 10 sec/cm) were not measured in the dark; however, resistances tended to decrease toward the end of the dark period indicating some degree of nocturnal stomatal opening. Leaf resistances were generally higher than those reported for nonsucculent plants. The data suggested that gaseous diffusion (Q) into or out of the leaves of K. blossfeldiana would be adequately described by an equation of the form, Q = D Δ e RL−1. There was little or no indication that physiological long days (15 min of 660 mμ light in the middle of a 16-hr dark period), which prevented flowering and reduced organic acid accumulation, significantly affected leaf resistance. It was concluded that the photoperiod response effects of dark CO2 fixation were probably not due to leaf-resistance changes and, therefore, not due to stomatal aperture changes.  相似文献   

19.
The objective of this study was to investigate the effect of ground transportation on guineapigs. Physiological parameters, i.e. heart rate (HR), body temperature (BT) and activity (ACT), were measured before and after transport, using previously implanted radiotelemetry transmitters. Body weight was measured before and after transport. After a postsurgical recovery period and data recording at the breeder's facility, the animals were transported for 2.25 h (Group 1) and for 7.5 h (Group 2) to a different animal facility. Data collection started immediately after arrival at the second animal facility. All parameters measured changed significantly after transport. These results suggest that a 10- to 12-day period is required for guineapigs to return to pre-transport levels of HR, BT and ACT.  相似文献   

20.
To assess if propranolol influences orthostatic intolerance induced by prolonged bed rest (BR), a lower body negative pressure test (LBNP) and left ventricular (LV) echocardiography before and during -40mmHg of LBNP were performed with and without intravenous propranolol administration (0.04mg/kg) in 9 healthy volunteers (mean age: 21 years) before and after 20 days BR. LBNP tolerance time (LBNP-T), endpoint heart rate(HR), and percentage changes from 0 to -40mmHg LBNP in HR, LV diastolic dimension(LVDd), stroke volume (SV), cardiac output (CO), and systemic vascular resistance(SVR) were measured. After BR, percentage changes in CO during LBNP was not altered by propranolol (-12+/-21% vs. -24+/-24%; with and without propranolol; p>0.05) because the effect on percentage changes in HR (18+/-11% vs. 26+/-12%; p<0.05) cancelled out the effects of percentage changes in LVDd (-9+/-6% vs. -15+/-10%; p<0.05) and percentage changes in SV (-26+/-16% vs. -39+/-22%; p<0.05). In addition, propranolol decreased end-point HR (85+/-15bpm vs. 119+/-l4bpm; p<0.05) and percentage changes in SVR (25+/-32% vs. 53+/-57%; p<0.05). As a result, LBNP-T after BR was unchanged by propranolol (8.8+/-3.3min vs. 10.8+/-5.0min; p>0.05). In conclusion, propranolol failed to change orthostatic intolerance induced by BR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号