首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Cytosolic malic enzyme (EC 1.1.1.40) was purified from bovine brain 5,600-fold to a specific activity of 47 U/mg. The enzyme is a homotetramer with a subunit molecular mass of 60 kDa and an isoelectric point of 6.2. Mouse monoclonal antibodies raised against this enzyme were purified and shown to be monospecific, as indicated by immunoblotting. Immunocytochemical examination of rat astroglia-rich primary cultures at the light microscopic level revealed colocalization of cytosolic malic enzyme with the astroglial marker glial fibrillary acidic protein. Also, a colocalization with the oligodendroglial marker myelin basic protein was found. Neurons in rat neuron-rich primary cultures did not show positive staining. The data suggest that cytosolic malic enzyme is a glial enzyme and is lacking in neurons.  相似文献   

2.
Malate has a number of key roles in the brain, including its function as a tricarboxylic acid (TCA) cycle intermediate, and as a participant in the malate-aspartate shuttle. In addition, malate is converted to pyruvate and CO2 via malic enzyme and may participate in metabolic trafficking between astrocytes and neurons. We have previously demonstrated that malate is metabolized in at least two compartments of TCA cycle activity in astrocytes. Since malic enzyme contributes to the overall regulation of malate metabolism, we determined the activity and kinetics of the mitochondrial and cytosolic forms of this enzyme from cultured astrocytes. Malic enzyme activity measured at 37°C in the presence of 0.5 mM malate was 4.15±0.47 and 11.61±0.98 nmol/min/mg protein, in mitochondria and cytosol, respectively (mean±SEM, n=18–19). Malic enzyme activity was also measured in the presence of several endogenous compounds, which have been shown to alter intracellular malate metabolism in astrocytes, to determine if these compounds affected malic enzyme activity. Lactate inhibited cytosolic malic enzyme by a noncompetitive mechanism, but had no effect on the mitochondrial enzyme. -Ketoglutarate inhibited both cytosolic and mitochondrial malic enzymes by a partial noncompetitive mechanism. Citrate inhibited cytosolic malic enzyme competitively and inhibited mitochondrial malic enzyme noncompetitively at low concentrations of malate, but competitively at high concentrations of malate. Both glutamate and aspartate decreased the activity of mitochondrial malic enzyme, but also increased the affinity of the enzyme for malate. The results demonstrate that mitochondrial and cytosolic malic enzymes have different kinetic parameters and are regulated differently by endogenous compounds previously shown to alter malate metabolism in astrocytes. We propose that malic enzyme in brain has an important role in the complete oxidation of anaplerotic compounds for energy.These data were presented in part at the meeting of the American Society for Neurochemistry in Richmond, Virginia, March 1993  相似文献   

3.
Glutathione reductase (GR) is an essential enzyme for the glutathione-mediated detoxification of peroxides because it catalyzes the reduction of glutathione disulfide. GR was purified from bovine brain 5,000-fold with a specific activity of 145 U/mg of protein. The homogeneity of the enzyme was proven by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the gel. The purified GR from bovine brain is a dimer of two subunits that have an apparent molecular mass of 55 kDa. The purified GR was used to generate a rabbit antiserum with the intention to localize GR in brain cells. The antiserum was useful for the detection of GR by double-labeling immunocytochemical staining in astroglia-rich and neuron-rich primary cultures from rat brain. In homogenates of these cultures, no significant difference in the specific activities of GR was determined. However, not all cell types present in these cultures showed identical staining intensity for GR. In astroglia-rich primary cultures, strong GR immunoreactivity was found in cells positive for the cellular markers galactocerebroside and C3b (antibody Ox42), indicating that oligodendroglial and microglial cells, respectively, contain GR. In contrast, only weak immunoreactivity for GR was found in cells positive for glial fibrillary acidic protein. In neuron-rich primary cultures, GAP43-positive cells stained with the antiserum against GR. These data demonstrate that, in cultures of neural cells, neurons, oligodendroglial cells, and microglial cells express high levels of GR.  相似文献   

4.
Astroglia-rich primary cultures and brain slices rapidly metabolize branched-chain amino acids (BCAAs), in particular leucine, as energy substrates. To allocate the capacity to degrade leucine oxidatively in neural cells, we have purified beta-methylcrotonyl-CoA carboxylase (beta-MCC) from rat liver as one of the enzymes unique for the irreversible catabolic pathway of leucine. Polyclonal antibodies raised against beta-MCC specifically cross-reacted with both enzyme subunits in liver and brain homogenates. Immunocytochemical examination of astroglia-rich rat primary cultures demonstrated the presence of beta-MCC in astroglial cells, where the enzyme was found to be located in the mitochondria, the same organelle that the mitochondrial isoform of the BCA(A) aminotransferase (BCAT) is located in. This colocalization of the two enzymes supports the hypothesis that mitochondrial BCAT is the isoenzyme that in brain energy metabolism prepares the carbon skeleton of leucine for irreversible degradation in astrocytes. Analysis of neuron-rich primary cultures revealed also that the majority of neurons contained beta-MCC. The presence of beta-MCC in most neurons demonstrates their ability to degrade the alpha-ketoisocaproate that could be provided by neighboring astrocytes or could be generated locally from leucine by the action of the cytosolic isoform of BCAT that is known to occur in neurons.  相似文献   

5.
The pi form of glutathione-S-transferase (GST), previously found to be oligodendrocyte associated, has also been found in myelin. In the brains of adult mice, immunocytochemical staining for a pi form of GST was observed in myelinated fibers, as well as oligodendrocytes. In contrast, and as previously found in rats, positive immunostaining for mu forms occurred in astrocytes and not in oligodendrocytes or myelinated fibers. Double immunofluorescence staining strengthened the conclusion that pi was in oligodendrocytes and myelin in mouse brains. The results of enzyme assays performed on brain homogenates and purified myelin indicated that GST specific activities in mouse brain myelin were almost as high (0.8-fold) as those in mouse brain homogenates. Low, but reproducible, GST activities were also observed in myelin purified from rat brains, in which pi had been demonstrated in oligodendrocytes and mu in astrocytes. The pi form was also stained by the immunoblot technique in myelin purified from mouse brain. It was concluded that pi is a myelin associated, as well as oligodendrocyte associated, enzyme in mouse brain, and possibly also in rat brain. This is the first report of localization of GSTs in mouse brain and of GST in myelin.  相似文献   

6.
Carbonic anhydrase (CA) was studied in primary monolayer cultures from neonatal rat cerebral hemispheres with both immunocytochemical and biochemical techniques. In such cultures, which consist predominantly of astrocytes, immunocytochemical staining for CA using antibody raised against the type II enzyme from rat erythrocytes resulted in positive staining of the flat, glial fibrillary acidic protein-positive, astrocytic monolayer. Smaller, process-bearing, round cells that grew on top of the astrocytes stained intensely for CA. We estimated that these cells represented 1% or less of the total cells in the cultures, and they have been identified by others as oligodendrocytes. The intensity of the staining of astrocytes for CA could be increased to that observed in oligodendrocytes when the astrocytes were made to round up and form processes by treatment with 2',3'-dibutyryl cyclic AMP. Enzymatic assays showed that CA activity of the cultures after 3 weeks of growth was 2.5- to 5-fold less than that found for cerebral homogenates from perfused 3-week-old rat brains. However, both activities were totally inhibited by acetazolamide with an I50 of 10(-8) M, confirming that both rat brain and the astrocyte cultures possess the high-activity type II enzyme. CA-II activity was unaffected by treatment of the cultures with a method reported to remove oligodendrocytes. Thus, the immunocytochemical and biochemical studies reported here demonstrate that astroglial cells in primary cultures from neonatal rat brain contain CA-II.  相似文献   

7.
The development and distribution of cytosolic creatine kinase (CK) activity was studied in rat brain and in cell culture. The activity of CK in whole brain increased almost fivefold during the period from birth to day 40 when adult levels of 18-19 U/mg of protein were attained. The distribution of CK activity was examined in dissected regions of the adult brain and was nonuniform; the cerebellum, the striatum, and the pyramidal tracts contained significantly higher CK activity than did whole brain. The cellular compartmentation of CK was investigated using primary cultures of purified neurons, astrocytes, and oligodendrocytes. The CK activity in neurons increased fourfold greater than that measured at the time of isolation to 4 U/mg of protein. The CK activity in astrocytes cultured for 20 days was 3.5 U/mg of protein and was 1.5-fold greater than that measured at the time of isolation. In contrast, the CK activity in cultured oligodendrocytes (day 20) was three- to fourfold higher than that determined in astrocytes and almost sevenfold higher than the activity measured at the time the cells were isolated. The high levels of CK in cultured oligodendrocytes suggest a role for this enzyme in oligodendrocyte function and/or myelinogenesis.  相似文献   

8.
Abstract: The ontogeny of the cerebral pyruvate recycling pathway and the cellular localization of associated enzymes, malic enzyme (ME) and phosphoenolpyruvate carboxykinase (PEPCK), have been investigated using a combination of 13C NMR spectroscopy, enzymatic analysis, and molecular biology approaches. Activity of the pathway, using [1,2-13C2]acetate as a substrate, was detected by 13C NMR in brain extracts 3 weeks after birth, increasing progressively up to the third month of age. In whole-brain homogenates, ME activity increased to adult levels with the same time course as the recycling pathway. PEPCK activity was low during the first 2 weeks of life and decreased further toward adulthood. ME and PEPCK activity were found in primary cultures of astrocytes and in synaptosomal fractions of adult brain. Primary cultures of cortical neurons showed PEPCK activity but no detectable ME activity. The cytosolic ME gene was expressed in primary cultures of neurons and in astrocytes as well as in the neonatal and adult brain. The PEPCK gene was expressed both in primary cultures of cortical neurons and in astrocytes, but the level of its expression in the neonatal and adult brain was undetectable.  相似文献   

9.
Abstract: Astrocytes have been cultured from neonatal rat brain according to the flask culture procedure of Booher and Sensenbrenner. Approximately 80% of the hexokinase (ATP: d -hexose 6-phosphotransferase, EC 2.7.1.1) activity is found in the soluble fraction in homogenates of these cells, in contrast to only 20% of the total activity in the soluble fraction of whole brain homogenates. The hexokinase from the cultured astrocytes has been compared with the cytoplasmic and glucose-6-P-solubilized mitochondrial enzymes from whole brain. In kinetic properties and pH-activity relationships, the glial hexokinase was similar to the cytoplasmic enzyme but different from the mitochondrial enzyme of whole brain. Using immunohistochemical methods for detecting hexokinase localization at the electron microscopic level, most of the cells showed prominent staining of cytoplasmic areas. If the cultured astrocytes are accepted as valid models for astrocytes in situ , these results support the suggestion of Bigl and co-workers that the predominant form of hexokinase in glial cells is the cytoplasmic enzyme.  相似文献   

10.
Cytosolic sialidase was purified from rat skeletal muscle, and the purified enzyme migrated as a single band of Mr 43,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A polyclonal antibody raised against the enzyme inhibited and immunoprecipitated rat liver cytosolic sialidase as well as the muscle enzyme but failed to cross-react with the intralysosomal sialidase of rat liver and membrane sialidases I (synaptosomal) and II (lysosomal) of rat brain. The antibody against brain membrane sialidase I (anti-I) and that against sialidase II (anti-II), which could be useful to discriminate the two enzymes, did not cross-react with the intralysosomal and cytosolic sialidases of liver. Although more than 90% of liver plasma membrane sialidase was immunoprecipitated with anti-I, only 60% of liver lysosomal membrane sialidase was immunoprecipitated with anti-II, the remainder being immunoprecipitated with anti-I. In confirmation of these data, liver lysosomal membrane exhibited two peaks of ganglioside sialidase corresponding to the membrane sialidases I and II on Aminohexyl-Sepharose chromatography while only one peak of ganglioside sialidase corresponding to sialidase I was observed for liver plasma membrane. These results indicate that the four types of rat sialidase are proteins distinct from one another and that the three kinds of antisera described above are useful for discriminating these sialidases qualitatively and probably quantitatively.  相似文献   

11.
The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.  相似文献   

12.
1. The pattern of NADP-linked malic enzyme activity estimated in the whole brain homogenate did not parallel that found in liver of developing rat. 2. Studies on intracellular distribution of malic enzyme in brain showed that the mitochondrial enzyme increased about three-fold between 10th and 40th day of life. Thereafter, a slow gradual increase to the adult level was observed. 3. The extramitochondrial malic enzyme from brain, like the liver enzyme, increased at the time of weaning, although to a lesser extent. At day 5 the brain malic enzyme was equally distributed between mitochondria and cytosol. 4. During the postnatal development, the contribution of the mitochondrial malic enzyme in the total activity was increasing, reaching the value approx. 80% at day 150 after birth. 5. The increase with age of the malic enzyme specific activity was observed in both synaptosomal and non-synaptosomal mitochondria, the changes in the last fraction being more pronounced. 6. The activity of citrate synthase developed markedly between 10-40 postnatal days, increasing about five-fold, while the specific activity of the enzyme did change neither in the synaptosomal nor in non-synaptosomal mitochondria at this period. 7. We conclude that the changes in malic enzyme activity in the developing rat brain are mainly due both to the increase of mitochondrial protein content and to the increase of specific activity of the mitochondrial malic enzyme.  相似文献   

13.
NADP+-dependent isocitrate dehydrogenases (ICDHs) are enzymes that reduce NADP+ to NADPH using isocitrate as electron donor. Cytosolic and mitochondrial isoforms of ICDH have been described. Little is known on the expression of ICDHs in brain cells. We have cloned the rat mitochondrial ICDH (mICDH) in order to obtain the sequence information necessary to study the expression of ICDHs in brain cells by RT-PCR. The cDNA sequence of rat mICDH was highly homologous to that of mICDH cDNAs from other species. By RT-PCR the presence of mRNAs for both the cytosolic and the mitochondrial ICDHs was demonstrated for cultured rat neurons, astrocytes, oligodendrocytes and microglia. The expression of both ICDH isoenzymes was confirmed by western blot analysis using ICDH-isoenzyme specific antibodies as well as by determination of ICDH activities in cytosolic and mitochondrial fractions of the neural cell cultures. In astroglial and microglial cultures, the total ICDH activity was almost equally distributed between cytosolic and mitochondrial fractions. In contrast, in cultures of neurons and oligodendrocytes about 75% of total ICDH activity was present in the cytosolic fractions. Putative functions of ICDHs in cytosol and mitochondria of brain cells are discussed.  相似文献   

14.
The physiological function in brain of glycogen and the enzyme catalyzing the rate-limiting step in glycogenolysis, glycogen phosphorylase (EC 2.4.1.1), is unknown. As a first step toward elucidating such a function, we have purified bovine brain glycogen phosphorylase isozyme BB 1,700-fold to a specific activity of 24 units/mg protein. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent silver staining, a single major protein band corresponding to an apparent molecular mass of 97 kDa was observed. Mouse monoclonal antibodies raised against the enzyme were purified and shown to be monospecific as indicated by immunoblotting. Immunocytochemical examination of astroglia-rich primary cultures of rat brain cells revealed a colocalization of glycogen phosphorylase with the astroglial marker glial fibrillary acidic protein in many cells. The staining for the enzyme appeared at two levels of intensity. There were other cells in the culture showing no specific staining under the experimental conditions employed. Neurons in neuron-rich primary cultures did not show positive staining. The data suggest that glycogen phosphorylase may be predominantly an astroglial enzyme and that astroglia cells play an important role in the energy metabolism of the brain.  相似文献   

15.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

16.
Lipoamide dehydrogenase (LADase) was purified to homogeneity from rat liver mitochondria, and the intracellular distribution and biosynthesis of the LADase were investigated with antibody prepared against the purified enzyme. 1) LADase activity was mostly found in mitochondria; the activity in cytosol was about one-tenth of that in mitochondria. 2) LADase in the crude mitochondrial and cytosolic extracts and the purified LADase were immunologically identical as judged from the Ouchterlony double diffusion test. These LADases were indistinguishable from each other on immunochemical titration; i.e., the amount of LADase precipitated by a fixed amount of the anti-LADase antibody was the same for all the preparations. However, cytosolic LADase activity was inhibited by the antibody more strongly than mitochondrial LADase activity. 3) Two min after intravenous injection of [35S]methionine, more radioactivity was incorporated into cytosolic LADase than into the mitochondrial enzyme in the liver. This result suggests that localization of LADase in the cytosolic fraction is not an artifact due to leakage from mitochondria during homogenization of rat liver. 4) LADase was synthesized predominantly on free ribosomes, which indicates that LADase is synthesized on cytoplasmic ribosomes and translocated into mitochondria just as other mitochondrial proteins are. 5) After cell-free protein synthesis with post-mitochondrial supernatant, radioactivity immunoprecipitated with anti-LADase antibody was detected as a major peak with the same molecular weight as the purified LADase.  相似文献   

17.
Guanylate cyclase was purified 12,700-fold from bovine brain supernatant, and the purified enzyme exhibited essentially a single protein band on polyacrylamide gel electrophoresis. Repeated injection of the purified enzyme into rabbits produced an antibody to guanylate cyclase. The immunoglobulin G fraction from the immunized rabbit gave only one precipitin line against the purified guanylate cyclase and the crude supernatant of bovine brain on double immunodiffusion and immunoelectrophoreis. The antibody completely inhibited the soluble guanylate cyclase activity from bovine brain, various tissues of rat and mouse and neuroblastoma N1E 115 cells, whereas the Triton-dispersed particulate guanylate cyclase from these tissues was not inhibited by the antibody.  相似文献   

18.
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)  相似文献   

19.
Abstract: Monoclonal antibodies against bovine brain succinic semialdehyde reductase were produced and characterized. A total of nine monoclonal antibodies recognizing different epitopes of the enzyme were obtained, of which two inhibited the enzyme activity and three stained cytosol of rat spinal cord neurons as observed by indirect immunofluorescence microscopy. When unfractionated total proteins of bovine brain homogenate were separated by gel electrophoresis and immunoblotted, the antibodies specifically recognized a single protein band of 34 kDa, which comigrates with purified bovine succinic semialdehyde reductase. Using the antisuccinic semialdehyde reductase antibodies as probes, we investigated the cross-reactivities of brain succinic semialdehyde reductases from some mammalian and an avian species. The immunoreactive bands on western blots appeared to be the same in molecular mass—34 kDa—in all animal species tested, including humans. The result indicates that brain succinic semialdehyde reductase is distinct from other aldehyde reductases and that mammalian brains contain only one succinic semialdehyde reductase. Moreover, the enzymes among the species are immunologically very similar, although some properties of the enzymes reported previously were different from one another.  相似文献   

20.
The RII-B isoform of the regulatory subunit (R) of cAMP-dependent protein kinase II is abundantly and selectively expressed in cerebral cortex (Erlichman, J., Sarkar, D., Fleischer, N., and Rubin, C. S. (1980) J. Biol. Chem. 255, 8179-8184). In contrast to the cytosolic RII-H isoform from heart and other non-neural tissues, a substantial fraction of cerebral cortex RII-B is tightly associated with cell organelles. In order to study the cellular basis for the localization and abundance of RII-B in this complex and heterogeneous tissue, rat cerebral cortex was fractionated into highly purified populations of neurons, astrocytes, and oligodendrocytes. In neurons and astrocytes more than 80% of the total cAMP-binding activity is contributed by RII subunits, whereas the myelin-producing oligodendrocytes contain nearly equal proportions of RI (from protein kinase I) and RII. Approximately 70% of RII and RI subunits are associated with the particulate fraction in each of the three types of brain cells. The nature of the RII isoforms expressed in the cytosolic and particulate fractions of the purified brain cells was established by performing Western immunoblot and indirect immunoprecipitation analyses with selective and sensitive polyclonal antibodies directed against RII-B. Astrocytes and neurons exhibit high levels of RII-B, whereas oligodendrocytes contain the RII-H isoform. Thus, the expression of RII isoforms is not uniform among brain cells that are anatomically and developmentally related. Rather, it appears that RII-B and RII-H are expressed in a cell-specific fashion within cerebral cortex and this might reflect an RII-mediated adaptation of protein kinase II to the specialized metabolic and functional roles of neurons, astrocytes, and oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号