共查询到20条相似文献,搜索用时 15 毫秒
1.
A structural motif called the small exterior hydrophobic cluster (SEHC) has been proposed to explain the stabilizing effect mediated by solvent-exposed hydrophobic residues; however, little is known about its biological roles. Unusually, in Delta(5)-3-ketosteroid isomerase from Pseudomonas putida biotype B (KSI-PI) Trp92 is exposed to solvent on the protein surface, forming a SEHC with the side-chains of Leu125 and Val127. In order to identify the role of the SEHC in KSI-PI, mutants of those amino acids associated with the SEHC were prepared. The W92A, L125A/V127A, and W92A/L125A/V127A mutations largely decreased the conformational stability, while the L125F/V127F mutation slightly increased the stability, indicating that hydrophobic packing by the SEHC is important in maintaining stability. The crystal structure of W92A revealed that the decreased stability caused by the removal of the bulky side-chain of Trp92 could be attributed to the destabilization of the surface hydrophobic layer consisting of a solvent-exposed beta-sheet. Consistent with the structural data, the binding affinities for three different steroids showed that the surface hydrophobic layer stabilized by SEHC is required for KSI-PI to efficiently recognize hydrophobic steroids. Unfolding kinetics based on analysis of the Phi(U) value also indicated that the SEHC in the native state was resistant to the unfolding process, despite its solvent-exposed site. Taken together, our results demonstrate that the SEHC plays a key role in the structural integrity that is needed for KSI-PI to stabilize the hydrophobic surface conformation and thereby contributes both to the overall conformational stability and to the binding of hydrophobic steroids in water solution. 相似文献
2.
The aromatic residues Phe-54, Phe-82, and Trp-116 in the hydrophobic substrate-binding pocket of Delta(5)-3-ketosteroid isomerase from Pseudomonas putida biotype B have been characterized in their roles in steroid binding and catalysis. Kinetic and equilibrium binding analyses were carried out for the mutant enzymes with the substitutions Phe-54 --> Ala or Leu, Phe-82 --> Ala or Leu, and Trp-116 --> Ala, Phe, or Tyr. The removal of their bulky, aromatic side chains at any of these three positions results in reduced k(cat), particularly when Phe-82 or Trp-116 is replaced by Ala. The results are consistent with the binding interactions of the aromatic residues with the bound steroid contributing to catalysis. All the mutations except the F82A mutation increase K(m); the F82A mutation decreases K(m) by ca. 3-fold, suggesting a possibility that the phenyl ring at position 82 might be unfavorable for substrate binding. The K(D) values for d-equilenin, an intermediate analogue, suggest that a space-filling hydrophobic side chain at position 54, a phenyl ring at position 82, and a nonpolar aromatic or small side chain at position 116 might be favorable for binding the reaction intermediate. In contrast to the increased K(D) for equilenin, the enzymes with any substitutions at positions 54 and 116 display a decreased K(D) for 19-nortestosterone, a product analogue, indicating that Phe-54 and Trp-116 might be unfavorable for product binding. The crystal structure of F82A determined to 2.1-A resolution reveals that Phe-82 is important for maintaining the active site geometry. Taken together, our results demonstrate that Phe-54, Phe-82, and Trp-116 contribute differentially to the stabilization of steroid species including substrate, intermediate, and product. 相似文献
3.
Roles of dimerization in folding and stability of ketosteroid isomerase from Pseudomonas putida biotype B 下载免费PDF全文
Kim DH Nam GH Jang DS Yun S Choi G Lee HC Choi KY 《Protein science : a publication of the Protein Society》2001,10(4):741-752
Equilibrium and kinetic analyses have been performed to elucidate the roles of dimerization in folding and stability of KSI from Pseudomonas putida biotype B. Folding was reversible in secondary and tertiary structures as well as in activity. Equilibrium unfolding transition, as monitored by fluorescence and ellipticity measurements, could be modeled by a two-state mechanism without thermodynamically stable intermediates. Consistent with the two-state model, one dimensional (1D) NMR spectra and gel-filtration chromatography analysis did not show any evidence for a folded monomeric intermediate. Interestingly enough, Cys 81 located at the dimeric interface was modified by DTNB before unfolding. This inconsistent result might be explained by increased dynamic motion of the interface residues in the presence of urea to expose Cys 81 more frequently without the dimer dissociation. The refolding process, as monitored by fluorescence change, could best be described by five kinetic phases, in which the second phase was a bimolecular step. Because <30% of the total fluorescence change occurred during the first step, most of the native tertiary structure may be driven to form by the bimolecular step. During the refolding process, negative ellipticity at 225 nm increased very fast within 80 msec to account for >80% of the total amplitude. This result suggests that the protein folds into a monomer containing most of the alpha-helical structures before dimerization. Monitoring the enzyme activity during the refolding process could estimate the activity of the monomer that is not fully active. Together, these results stress the importance of dimerization in the formation and maintenance of the functional native tertiary structure. 相似文献
4.
Byung-Ha Oh Suhng Wook Kim Seong-Eon Ryu Sang-Soo Kim Mi-Kyung Yoon Kwan Yong Choi 《Proteins》1996,24(4):514-515
The Δ5-3-ketosteroid isomerase from Pseudomonas putida biotype B has been crystallized. The crystals belong to the space group P212121 with unit cell dimensions of a = 36.48 Å, b = 74.30 Å, c = 96.02 Å, and contain one homodimer per asymmetric unit. Native diffraction data to 2.19 Å resolution have been obtained from one crystal at room temperature indicating that the crystals are quite suitable for structure determination by multiple isomorphous replacement. 相似文献
5.
Delta(5)-3-Ketosteroid isomerase from Pseudomonas putida biotype B is one of the most proficient enzymes catalyzing an allylic isomerization reaction at rates comparable to the diffusion limit. The hydrogen-bond network (Asp99... Wat504...Tyr14...Tyr55...Tyr30) which links the two catalytic residues, Tyr14 and Asp99, to Tyr30, Tyr55, and a water molecule in the highly apolar active site has been characterized in an effort to identify its roles in function and stability. The DeltaG(U)(H2O) determined from equilibrium unfolding experiments reveals that the elimination of the hydroxyl group of Tyr14 or Tyr55 or the replacement of Asp99 with leucine results in a loss of conformational stability of 3.5-4.4 kcal/mol, suggesting that the hydrogen bonds of Tyr14, Tyr55, and Asp99 contribute significantly to stability. While decreasing the stability by about 6.5-7.9 kcal/mol, the Y55F/D99L or Y30F/D99L double mutation also reduced activity significantly, exhibiting a synergistic effect on k(cat) relative to the respective single mutations. These results indicate that the hydrogen-bond network is important for both stability and function. Additionally, they suggest that Tyr14 cannot function efficiently alone without additional support from the hydrogen bonds of Tyr55 and Asp99. The crystal structure of Y55F as determined at 1.9 A resolution shows that Tyr14 OH undergoes an alteration in orientation to form a new hydrogen bond with Tyr30. This observation supports the role of Tyr55 OH in positioning Tyr14 properly to optimize the hydrogen bond between Tyr14 and C3-O of the steroid substrate. No significant structural changes were observed in the crystal structures of Y30F and Y30F/Y55F, which allowed us to estimate approximately the interaction energies mediated by the hydrogen bonds Tyr30...Tyr55 and Tyr14...Tyr55. Taken together, our results demonstrate that the hydrogen-bond network provides the structural support that is needed for the enzyme to maintain the active-site geometry optimized for both function and stability. 相似文献
6.
G H Nam D S Jang S S Cha T H Lee D H Kim B H Hong Y S Yun B H Oh K Y Choi 《Biochemistry》2001,40(45):13529-13537
Ketosteroid isomerase (KSI) from Pseudomonas putida biotype B is a homodimeric enzyme catalyzing an allylic rearrangement of Delta5-3-ketosteroids at rates comparable with the diffusion-controlled limit. The tyrosine triad (Tyr14.Tyr55.Tyr30) forming a hydrogen-bond network in the apolar active site of KSI has been characterized in an effort to identify the roles of the phenyl rings in catalysis, stability, and unfolding of the enzyme. The replacement of Tyr14, a catalytic residue, with serine resulted in a 33-fold decrease of kcat, while the replacements of Tyr30 and Tyr55 with serine decreased kcat by 4- and 51-fold, respectively. The large decrease of kcat for Y55S could be due to the structural perturbation of alpha-helix A3, which results in the reorientation of the active-site residues as judged by the crystal structure of Y55S determined at 2.2 A resolution. Consistent with the analysis of the Y55S crystal structure, the far-UV circular dichroism spectra of Y14S, Y30S, and Y55S indicated that the elimination of the phenyl ring of the tyrosine reduced significantly the content of alpha-helices. Urea-induced equilibrium unfolding experiments revealed that the DeltaG(U)H2O values of Y14S, Y30S, and Y55S were significantly decreased by 11.9, 13.7, and 9.5 kcal/mol, respectively, as compared with that of the wild type. A characterization of the unfolding kinetics based on PhiU-value analysis indicates that the interactions mediated by the tyrosine triad in the native state are very resistant to unfolding. Taken together, our results demonstrate that the internal packing by the phenyl rings in the active-site tyrosine triad contributes to the conformational stability and catalytic activity of KSI by maintaining the structural integrity of the alpha-helices. 相似文献
7.
Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B. 下载免费PDF全文
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate. 相似文献
8.
Identification of active site residues by site-directed mutagenesis of delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. 下载免费PDF全文
In order to assess the roles of specific amino acid residues in the delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B during catalysis, we replaced aspartic acid 40 with asparagine (D40N) and tyrosine 16 with phenylalanine (Y16F) in the enzyme by site-directed mutagenesis. Both purified mutant enzymes resulted in profound decreases in catalytic activities, 10(3.3)-fold in the Y16F mutant and 10(6.2)-fold in the D40N mutant. Aspartic acid 40 and tyrosine 16 of the enzyme are the corresponding amino acids in the active site of the homologous enzyme from Comamonas testosteroni. Our results indicate that active-site residues of the two homologous enzymes are similar. This is opposite to the previous identification of a cysteine in an active site-directed photoinactivation study of the enzyme. 相似文献
9.
The amino acid sequence of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B 总被引:3,自引:0,他引:3
We have determined the primary structure of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. The enzyme is a dimeric protein of two identical subunits, each consisting of a polypeptide chain of 131 residues and a Mr = 14,536. The intact S-carboxymethyl protein was sequenced from the NH2 terminus using standard automated Edman degradation and automated Edman degradation using fluorescamine treatment at known prolines to suppress background. The isomerase was fragmented using CNBr, trypsin, iodosobenzoic acid, and acid cleavage at aspartyl-prolyl peptide bonds. The peptides resulting from each fragmentation were separated by reversed-phase high performance liquid chromatography and sequenced by automated Edman degradation. The full sequence was deduced by the overlapping of the various peptides. A search for homologous proteins was performed. Only the oxosteroid isomerase from Pseudomonas testosteroni, an expected homology, was found to be similar. Comparison of the two proteins shows that the region of strongest homology is the region containing the aspartic acid at which steroidal affinity and photoaffinity reagents have been shown to react in the P. testosteroni isomerase. The P. putida isomerase contains 3 cysteines and 2 tryptophans, whereas the P. testosteroni isomerase lacks these amino acids. The two proteins are not highly conserved. 相似文献
10.
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI. 相似文献
11.
D R?ther L Poppe S Viergutz B Langer J Rétey 《European journal of biochemistry》2001,268(23):6011-6019
Elucidation of the 3D structure of histidine ammonia-lyase (HAL, EC 4.3.1.3) from Pseudomonas putida by X-ray crystallography revealed that the electrophilic prosthetic group at the active site is 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) [Schwede, T.F., Rétey, J., Schulz, G.E. (1999) Biochemistry, 38, 5355-5361]. To evaluate the importance of several amino-acid residues at the active site for substrate binding and catalysis, we mutated the following amino-acid codons in the HAL gene: R283, Y53, Y280, E414, Q277, F329, N195 and H83. Kinetic measurements with the overexpressed mutants showed that all mutations resulted in a decrease of catalytic activity. The mutants R283I, R283K and N195A were approximately 1640, 20 and 1000 times less active, respectively, compared to the single mutant C273A, into which all mutations were introduced. Mutants Y280F, F329A and Q277A exhibited approximately 55, 100 and 125 times lower activity, respectively. The greatest loss of activity shown was in the HAL mutants Y53F, E414Q, H83L and E414A, the last being more than 20 900-fold less active than the single mutant C273A, while H83L was 18 000-fold less active than mutant C273A. We propose that the carboxylate group of E414 plays an important role as a base in catalysis. To investigate a possible participation of active site amino acids in the formation of MIO, we used the chromophore formation upon treatment of HAL with l-cysteine and dioxygen at pH 10.5 as an indicator. All mutants, except F329A showed the formation of a 338-nm chromophore arising from a modified MIO group. The UV difference spectra of HAL mutant F329A with the MIO-free mutant S143A provide evidence for the presence of a MIO group in HAL mutant F329A also. For modelling of the substrate arrangement within the active site and protonation state of MIO, theoretical calculations were performed. 相似文献
12.
Escherichia coli heat shock protein ClpB disaggregates denatured protein in cooperation with the DnaK chaperone system. Several studies showed that the N-terminal domain is essential for the chaperone activity, but its role is still largely unknown. The N-terminal domain contains two structurally similar subdomains, and conserved amino acids Thr7 and Ser84 share the same position in two apparent sequence repeats. T7A and S84A substitutions affected chaperone activity of ClpB without significantly changing the native conformation [Liu, Z. et al. (2002) J. Mol. Biol. 321, 111-120]. In this study, we aimed to better understand the roles of several conserved amino acid residues, including Thr7 and Ser84, in the N-terminal domain. We investigated the effects of mutagenesis on substrate binding and conformational states of ClpB N-terminal domain fragment (ClpBN). Fluorescence polarization analysis showed that the T7A and S84A substitutions enhanced the interaction between ClpBN and protein aggregates. Interestingly, further analyses suggested that the mechanisms by which they do so are quite different. For T7A substitution, the increased substrate affinity could be due to a conformational change in the hydrophobic core as revealed by NMR spectroscopy. In contrast, for S84A, increased substrate binding would be explained by a unique conformational state of this mutant as revealed by pressure perturbation analysis. The thermal transition temperature of the S84A mutant, monitored by DSC, was 6.1 degrees C lower than that of wild-type. Our results revealed that conserved amino acids Thr7 and Ser84 both participated in maintaining the conformational integrity of the ClpB N-terminal domain. 相似文献
13.
Cloning, nucleotide sequence, and overexpression of the gene coding for delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. 下载免费PDF全文
The structural gene coding for the delta 5-3-ketosteroid isomerase (KSI) of Pseudomonas putida biotype B has been cloned, and its entire nucleotide sequence has been determined by a dideoxynucleotide chain termination method. A 2.1-kb DNA fragment containing the ksi gene was cloned from a P. putida biotype B genomic library in lambda gt11. The open reading frame of ksi encodes 393 nucleotides, and the amino acid sequence deduced from the nucleotide sequence agrees with the directly determined amino acid sequence (K. Linden and W. F. Benisek, J. Biol. Chem. 261:6454-6460, 1986). A putative purine-rich ribosome binding site was found 8 bp upstream of the ATG start codon. Escherichia coli BL21(DE3) transformed with the pKK-KSI plasmid containing the ksi gene expressed a high level of isomerase activity when induced by isopropyl-beta-D-thiogalactopyranoside. KSI was purified to homogeneity by a simple and rapid procedure utilizing fractional precipitation and an affinity column of deoxycholate-ethylenediamine-agarose as a major chromatographic step. The molecular weight of KSI was 14,535 (calculated, 14,536) as determined by electrospray mass spectrometry. The purified KSI showed a specific activity (39,807 mumol min-1 mg-1) and a Km (60 microM) which are close to those of KSI originally obtained from P. putida biotype B. 相似文献
14.
Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pK(a) of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that the differences in the experimental NMR data and electronic absorption spectra for pKSI and tKSI, two homologous bacterial forms of the enzyme, are due predominantly to the third tyrosine that is present in the hydrogen bonding network of pKSI but not tKSI. These studies also provide experimentally testable predictions about the impact of mutating the distal tyrosine residues in this hydrogen bonding network on the NMR chemical shifts and electronic absorption spectra. 相似文献
15.
Delta 5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Delta 5-3-ketosteroids at a rate approaching the diffusion limit by an intramolecular transfer of a proton. Despite the extensive studies on the catalytic mechanism, it still remains controversial whether the catalytic residue Asp-99 donates a hydrogen bond to the steroid or to Tyr-14. To clarify the role of Asp-99 in the catalysis, two single mutants of D99E and D99L and three double mutants of Y14F/D99E, Y14F/D99N, and Y14F/D99L have been prepared by site-directed mutagenesis. The D99E mutant whose side chain at position 99 is longer by an additional methylene group exhibits nearly the same kcat as the wild-type while the D99L mutant exhibits ca. 125-fold lower kcat than that of the wild-type. The mutations made at positions 14 and 99 exert synergistic or partially additive effect on kcat in the double mutants, which is inconsistent with the mechanism based on the hydrogen-bonded catalytic dyad, Asp-99 COOH...Tyr-14 OH...C3-O of the steroid. The crystal structure of D99E/D38N complexed with equilenin, an intermediate analogue, at 1.9 A resolution reveals that the distance between Tyr-14 O eta and Glu-99 O epsilon is ca. 4.2 A, which is beyond the range for a hydrogen bond, and that the distance between Glu-99 O epsilon and C3-O of the steroid is maintained to be ca. 2.4 A, short enough for a hydrogen bond to be formed. Taken together, these results strongly support the idea that Asp-99 contributes to the catalysis by donating a hydrogen bond directly to the intermediate. 相似文献
16.
To elucidate correlative relationships between structural change and thermodynamic stability in proteins, a series of mutant human lysozymes modified at two buried positions (Ile56 and Ile59) were examined. Their thermodynamic parameters of denaturation and crystal structures were studied by calorimetry and X-ray crystallography. The mutants at positions 56 and 59 exhibited different responses to a series of amino acid substitutions. The changes in stability due to substitutions showed a linear correlation with changes in hydrophobicity of substituted residues, having different slopes at each mutation site. However, the stability of each mutant was found to be represented by a unique equation involving physical properties calculated from mutant structures. By fitting present and previous stability data for mutant human lysozymes substituted at various positions to the equation, the magnitudes of the hydrophobicity of a carbon atom and the hydrophobicity of nitrogen and neutral oxygen atoms were found to be 0.178 and -0.013 kJ/mol.A(2), respectively. It was also found that the contribution of a hydrogen bond with a length of 3.0 A to protein stability was 5.1 kJ/mol and the entropy loss of newly introduction of a water molecules was 7.8 kJ/mol. 相似文献
17.
Kudou D Misaki S Yamashita M Tamura T Esaki N Inagaki K 《Bioscience, biotechnology, and biochemistry》2008,72(7):1722-1730
The cysteinyl residue at the active site of L-methionine gamma-lyase from Pseudomonas putida (MGL_Pp) is highly conserved among the heterologous MGLs. To determine the role of Cys116, we constructed 19 variants of C116X MGL_Pp by saturation mutagenesis. The Cys116 mutants possessed little catalytic activity, while their affinity for each substrate was almost the same as that of the wild type. Especially, the C116S, C116A, and C116H variants composed active site catalytic function as measured by the kinetic parameter k(cat) toward L-methionine. Furthermore, the mutagenesis of Cys116 also affected the substrate specificity of MGL_Pp at the active center. Substitution of Cys116 for His led to a marked increase in activity toward L-cysteine and a decrease in that toward L-methionine. Propargylglycine inactivated the WT MGL, C116S, and C116A mutants. Based on these results, we postulate that Cys116 plays an important role in the gamma-elimination reaction of L-methionine and in substrate recognition in the MGLs. 相似文献
18.
Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida 下载免费PDF全文
Charged amino acids in the predicted transmembrane portion of PcaK, a permease from Pseudomonas putida that transports 4-hydroxybenzoate (4-HBA), were required for 4-HBA transport, and they were also required for P. putida to have a chemotactic response to 4-HBA. An essential amino acid motif (DGXD) containing aspartate residues is located in the first transmembrane segment of PcaK and is conserved in the aromatic acid/H+ symporter family of the major facilitator superfamily of transporters. 相似文献
19.
Contribution of active site residues to the activity and thermal stability of ribonuclease Sa 下载免费PDF全文
Yakovlev GI Mitkevich VA Shaw KL Trevino S Newsom S Pace CN Makarov AA 《Protein science : a publication of the Protein Society》2003,12(10):2367-2373
We have used site-specific mutagenesis to study the contribution of Glu 74 and the active site residues Gln 38, Glu 41, Glu 54, Arg 65, and His 85 to the catalytic activity and thermal stability of ribonuclease Sa. The activity of Gln38Ala is lowered by one order of magnitude, which confirms the involvement of this residue in substrate binding. In contrast, Glu41Lys had no effect on the ribonuclease Sa activity. This is surprising, because the hydrogen bond between the guanosine N1 atom and the side chain of Glu 41 is thought to be important for the guanine specificity in related ribonucleases. The activities of Glu54Gln and Arg65Ala are both lowered about 1000-fold, and His85Gln is totally inactive, confirming the importance of these residues to the catalytic function of ribonuclease Sa. In Glu74Lys, k(cat) is reduced sixfold despite the fact that Glu 74 is over 15 A from the active site. The pH dependence of k(cat)/K(M) is very similar for Glu74Lys and wild-type RNase Sa, suggesting that this is not due to a change in the pK values of the groups involved in catalysis. Compared to wild-type RNase Sa, the stabilities of Gln38Ala and Glu74Lys are increased, the stabilities of Glu41Lys, Glu54Gln, and Arg65Ala are decreased and the stability of His85Gln is unchanged. Thus, the active site residues in the ribonuclease Sa make different contributions to the stability. 相似文献
20.
Angela Tramonti Robert A John Francesco Bossa Daniela De Biase 《European journal of biochemistry》2002,269(20):4913-4920
Glutamate decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the irreversible alpha-decarboxylation of glutamate to yield 4-aminobutyrate. In Escherichia coli, as well as in other pathogenic and nonpathogenic enteric bacteria, this enzyme is a structural component of the glutamate-based acid resistance system responsible for cell survival in extremely acidic conditions (pH < 2.5). The contribution of the active-site lysine residue (Lys276) to the catalytic mechanism of E. coli glutamate decarboxylase has been determined. Mutation of Lys276 into alanine or histidine causes alterations in the conformational properties of the protein, which becomes less flexible and more stable. The purified mutants contain very little (K276A) or no (K276H) cofactor at all. However, apoenzyme preparations can be reconstituted with a full complement of coenzyme, which binds tightly but slowly. The observed spectral changes suggest that the cofactor is present at the active site in its hydrated form. Binding of glutamate, as detected by external aldimine formation, occurs at a very slow rate, 400-fold less than that of the reaction between glutamate and pyridoxal 5'-phosphate in solution. Both Lys276 mutants are unable to decarboxylate the substrate, thus preventing detailed investigation of the role of this residue on the catalytic mechanism. Several lines of evidence show that mutation of Lys276 makes the protein less flexible and its active site less accessible to substrate and cofactor. 相似文献