首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the previous paper (Block, M. A., Dorne, A.-J., Joyard, J., and Douce, R. (1983) J. Biol. Chem. 258, 13273-13280), we have described a method for the separation of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. The two envelope membranes have a different weight ratio of acyl lipid to protein (2.5-3 for the outer envelope membrane and 0.8-1 for the inner envelope membrane). The two membranes also differ in their polar lipid composition. However, in order to prevent the functioning of the galactolipid:galactolipid galactosyltransferase during the course of envelope membrane separation, we have analyzed the polar lipid composition of each envelope membrane after thermolysin treatment of the intact chloroplasts. The outer envelope membrane is characterized by the presence of high amounts of phosphatidylcholine and digalactosyldiacylglycerol whereas the inner envelope membrane has a polar lipid composition almost identical with that of the thykaloids. No phosphatidylethanolamine or cardiolipin could be detected in either envelope membranes, thus demonstrating that the envelope membranes, and especially the outer membrane, do not resemble extrachloroplastic membranes. No striking differences were found in the fatty acid composition of the polar lipids from either the outer or the inner envelope membrane. The two envelope membranes also differ in their carotenoid composition. Among the different enzymatic activities associated with the chloroplast envelope, we have shown that the Mg2+-dependent ATPase, the UDP-Gal:diacylglycerol galactosyltransferase, the phosphatidic acid phosphatase, and the acyl-CoA thioesterase are associated with the inner envelope from spinach chloroplasts whereas the acyl-CoA synthetase is located on the outer envelope membrane.  相似文献   

2.
Procedures are described for the rapid and quantitative analysis of cyanobacterial heterocyst-type glycolipids (HGs) by normal-phase HPLC of their per-O-benzoylated derivatives. Total lipids are obtained from 1 ml of nitrogen-fixing cyanobacterial culture by triplicate extraction with chloroform/methanol, 1/1 (v/v), and the HGs are isolated from other complex lipids by preparative silica gel TLC. A C18 solid-phase extraction cartridge is used to ensure quantitative salt-free recovery of the HGs, and the purified glycolipids are then rendered uv-absorbing by a per-O-benzoylation derivatization reaction for which optimal conditions have been established. Derivatives are analyzed within 12 min on a 3-microns silica HPLC column using a linear gradient of 2-propanol in n-hexane and uv monitoring at 230 nm. The reaction product was also used to determine the relative proportions of the glucosyl and galactosyl epimers of individual members of this class of glycolipid.  相似文献   

3.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase.  相似文献   

4.
The galactosylation steps in the biosynthesis of galactolipids involve two different enzymes; a UDP-Gal:diacylglycerol galactosyltransferase and a galactolipid:galactolipid galactosyltransferase. Previous localization studies have shown that in spinach these enzymes are located in the chloroplast envelope. Our results with peas (Pisum sativum var Laxton's Progress No. 9) confirm these results and extend the localization by providing evidence that the galactosyltransferases are in the outer membrane of the envelope. The specific activity of UDP-Gal:diacylglycerol galactosyltransferase in outer membrane preparations was 6 to 10 times greater than that exhibited by inner membrane preparations. In addition, using quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was possible to show that the UDP-Gal:diacylglycerol galactosyltransferase activity associated with inner membrane preparations could be accounted for by outer membrane contamination. It is concluded from these results that this enzyme is located predominantly, if not exclusively, in the outer membrane of the envelope. An analysis of the galactolipid products synthesized by the highly purified outer membrane showed that the galactolipid:galactolipid galactosyltransferase is also present, suggesting that this enzyme is also an outer membrane enzyme. The implication of these results is that the final assembly of galactolipids is carried out on the outer membrane of the chloroplast envelope.  相似文献   

5.
Lipid synthesis and metabolism in the plastid envelope   总被引:7,自引:0,他引:7  
Plastid envelope membranes play a major role in the biosynthesis of glycerolipids. In addition, plastids are characterized by the occurrence of plastid-specific membrane glycolipids (galactolipids, a sulfolipid). Plant lipid metabolism therefore has unique features, when compared to that of other eukaryotic organisms, such as animals and yeast. However, the glycerolipid biosynthetic pathway in chloroplasts is almost identical to that found in cyanobacteria, and reflects the prokaryotic origin of the chloroplast. Fatty acids generated in the plastid stroma are substrates for a whole set of enzymes involved in the synthesis of polar lipids of plastid membranes such as galactolipids, the sulfolipid, the phosphatidylglycerol. In addition, fatty acids are exported outside the plastid where they are used for extraplastidial polar lipid synthesis (phosphatidylcholine, phosphatidylethanolamine, etc.). Various desaturation steps leading to the formation of polyunsaturated fatty acids occur in various cell compartments, especially in chloroplasts, using fatty acids esterified to polar lipids as substrates. Furthermore, plant glycerolipids can be metabolized by a series of very active envelope enzymes, such as the galactolipid:galactolipid galactosyltransferase and the acyl-galactolipid forming enzyme. The physiological significance of these enzymes is however largely unknown. One of the most active pathways involved in lipid metabolism and present in envelope membranes is the oxylipin pathway: polyunsaturated fatty acids that are released from polar lipids under various conditions (injury, pathogen attack) are converted to oxylipin. Thus, the plastid envelope membranes are also involved in the formation of signalling molecules.  相似文献   

6.
Galactolipids not only play a crucial role in photosynthesis but are also important for the adaptation of membrane-lipid composition in plants to phosphate-limiting conditions. The enzymes of galactolipid assembly have been localised to the envelope membranes of chloroplasts. Lipid trafficking is essential for galactolipid synthesis and redistribution because lipid precursors originate from two compartments, the endoplasmic reticulum (ER) and the plastid, and because galactolipids have to be transported to extraplastidial membranes during phosphate deprivation. Analysis of Arabidopsis mutants that are impaired in galactolipid synthesis (i.e. dgd1 and dgd2) or in ER-to-plastid lipid transport (i.e. tgd1) has resulted in the identification of a processive galactosyltransferase whose function is still enigmatic.  相似文献   

7.
Huang J  Cao G  Hu X  Sun C  Zhang J 《Chirality》2006,18(8):587-591
(S)-Ornidazole is a subject of research as an antifertility agent in male animals at present. However, there seems to be no relative report on chiral separation for rac-Ornidazole, which has been used as an effective medicine for more than 30 years. In this article, the chiral separation of rac-Ornidazole on a Chiralcel OB-H column based on normal-phase high-performance liquid chromatography (NP-HPLC) is investigated and the methodology for detection of impurity of (R)-Ornidazole in (S)-Ornidazole injection and raw material is established. The novel mobile phase is utilized by mixing n-hexane, methanol and isopropyl alcohol (95:4:1, v/v/v) instead of the typical mobile phase of n-hexane and isopropyl alcohol, although the methanol, which offers a good resolution factor for the enantiomeric separation in this system, is not recommended on the Chiralcel OB-H column according to the instruction supplied by Daicel Chemical Ind., LTD (Japan).  相似文献   

8.
Two genes (DGD1 and DGD2) are involved in the synthesis of the chloroplast lipid digalactosyldiacylglycerol (DGDG). The role of DGD2 for galactolipid synthesis was studied by isolating Arabidopsis T-DNA insertional mutant alleles (dgd2-1 and dgd2-2) and generating the double mutant line dgd1 dgd2. Whereas the growth and lipid composition of dgd2 were not affected, only trace amounts of DGDG were found in dgd1 dgd2. The growth and photosynthesis of dgd1 dgd2 were affected more severely compared with those of dgd1, indicating that the residual amount of DGDG in dgd1 is crucial for normal plant development. DGDG synthesis was increased after phosphate deprivation in the wild type, dgd1, and dgd2 but not in dgd1 dgd2. Therefore, DGD1 and DGD2 are involved in DGDG synthesis during phosphate deprivation. DGD2 was localized to the outer side of chloroplast envelope membranes. Like DGD2, heterologously expressed DGD1 uses UDP-galactose for galactosylation. Galactolipid synthesis activity for monogalactosyldiacylglycerol (MGDG), DGDG, and the unusual oligogalactolipids tri- and tetragalactosyldiacylglycerol was detected in isolated chloroplasts of all mutant lines, including dgd1 dgd2. Because dgd1 and dgd2 carry null mutations, an additional, processive galactolipid synthesis activity independent from DGD1 and DGD2 exists in Arabidopsis. This third activity, which is related to the Arabidopsis galactolipid:galactolipid galactosyltransferase, is localized to chloroplast envelope membranes and is capable of synthesizing DGDG from MGDG in the absence of UDP-galactose in vitro, but it does not contribute to net galactolipid synthesis in planta.  相似文献   

9.
Frost hardening of seedlings of Scots pine (Pinus sylvestris) at a non-freezing temperature of 4°C resulted in a 2-fold increase of the acyl lipids of the needles. This was because of increases in phospholipids and triglycerides. The galactolipid content of the needles was almost the same in unhardened and frost-hardened seedlings. In unhardened seedlings the mol ratio of monogalactosyl diacylglycerol (MGDG) to digalactosyl diacylglycerol (DGDG) was 1.7 ± 0.3 and 0.9 ± 0.2 in needles and isolated thylakoids, respectively. Corresponding ratios for frost-hardened seedlings were 1.5 ± 0.2 and 0.3 ± 0.03. The lower ratios found in isolated thylakoids, particularly in thylakoids from frost-hardened seedlings, are suggested to depend on the enzyme galactolipid: galactolipid galactosyltransferase being active during the isolation procedure. This is deduced from the result that the content of MGDG decreased and that of DGDG and 1.2 diglycerides increased. Needles of Scots pine also contain phospholipidase D. This enzyme was active during thylakoid preparation, particularly after frost hardening, as judged from the large amount of phosphatidic acid found the in thylakoid fraction isolated from frost-hardening needles. The fatty acid composition of the acyl lipids showed no major changes due to hardening at non-freezing temperature.  相似文献   

10.
Myelination is a developmentally regulated process whereby myelinating glial cells elaborate large quantities of a specialized plasma membrane that ensheaths axons. The myelin sheath contains an unusual lipid composition in that the glycolipid galactosylceramide (GalC) and its sulfated form sulfatide constitute a large proportion of the total lipid mass. These glycolipids have been implicated in a range of developmental processes such as cell differentiation and myelination initiation, but analyses of mice lacking UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme required for myelin galactolipid synthesis, have more recently demonstrated that the galactolipids more subtly regulate myelin formation. The CGT mutants display a delay in myelin maturation and axo-glial interactions develop abnormally. By interbreeding the CGT mutants with mice that lack myelin-associated glycoprotein, it has been shown that these specialized myelin lipids and proteins act in concert to promote axo-glial adhesion during myelinogenesis. The analysis of the CGT mutants is helping to clarify the roles myelin galactolipids play in regulating the development, and ultimately the function of the myelin sheath.  相似文献   

11.
The galactolipid digalactosyldiacylglycerol (DGDG), one of the main chloroplast lipids in higher plants, is believed to be synthesized by the galactolipid:galactolipid galactosyltransferase, which transfers a galactose moiety from one molecule of monogalactosyldiacylglycerol (MGDG) to another. Here, we report that Arabidopsis as well as other plant species contain two genes, DGD1 and DGD2, encoding enzymes with DGDG synthase activity. Using MGDG and UDP-galactose as substrates for in vitro assays with DGD2 we could for the first time measure DGDG synthase activity of a heterologously expressed plant cDNA. UDP-galactose, but not MGDG, serves as the galactose donor for DGDG synthesis catalyzed by DGD2, providing clear evidence for the existence of a UDP-galactose-dependent DGDG synthase in higher plants. In in vitro assays, DGD2 was capable of galactosylating DGDG, resulting in the synthesis of an oligogalactolipid tentatively identified as trigalactosyldiacylglycerol. DGD2 mRNA expression in leaves was very low but was strongly induced during growth under phosphate-limiting conditions. This induction correlates with the previously described increase in DGDG during phosphate deprivation. Therefore, in contrast to DGD1, which is responsible for the synthesis of the bulk of DGDG found in chloroplasts, DGD2 apparently is involved in the synthesis of DGDG under specific growth conditions.  相似文献   

12.
A method for the maximum recovery of prostaglandins from brain tissue with simultaneous recovery of neutral lipids and phospholipids was developed. Hexane:2-propanol was used to extract lipids from bovine brain. This method, which does not require a washing step to remove nonlipid contaminants, was compared to extraction according to Folch et al. [(1957) J. Biol. Chem. 226, 497-509] for efficiency of lipid extraction. Recoveries of prostaglandins were 12-37% greater with hexane:2-propanol than with the Folch extraction procedure with washing. The ratios of cholesterol to lipid phosphorus and absolute phospholipid recoveries were comparable for the two methods. A new elution sequence was devised for separation of lipid classes on silicic acid columns. The elution sequence was chloroform (neutral lipids and free fatty acids), methyl formate (prostaglandins and cerebrosides), acetone (remaining glycolipids), and methanol (phospholipids). Reverse-phase HPLC of the methyl formate fraction was used to separate the prostaglandins. The method permits simultaneous quantitative recovery of prostaglandins and phospholipids (which contain the 20:4(n-6) precursor for prostaglandin synthesis), and therefore allows changes in phospholipid composition and prostaglandin synthesis to be studied in the same tissue sample.  相似文献   

13.
A comparative TLC analysis of lipid extracts from Bifidobacterium longum B 379 M, B. bifidum 791, and B. adolescentis 94 BIM has been performed. It is demonstrated that carbohydrate-containing lipid components were present in the bacteria, which differed in their chromatographic mobility (Rf) from similar compounds isolated from actinomycetes Stomatococcus mucilaginosus PCM 2415T, Nocardiopsis dassonvillei PCM 2492, Propionibacterium propionicum PCM 2431, Saccharopolyspora hirsuta PCM 2279 (= ATCC 27875T), Rhodococcus equi PCMT 559 (= ATCC 3969), and Gordonia bronchialis PCM 2167. Polar lipids of bifidobacteria exhibited the closest similarity to their counterparts from propionic acid bacteria. Preparative chromatography (silica gel column I; elution with chloroform, acetone, and methanol) of the lipid extract of B. adolescentis 94 BIM made it possible to isolate fractions containing nonpolar lipids, glycolipids, and phospholipids. Further purification of the glycolipid fraction (column II; eluant, methanol gradient in chloroform) produced preparations of glycolipids and phospholipids. The preparations were studied by two-dimensional TLC using solvent systems chloroform-methanol-H2O MiLi Q (65 : 25 : 4, v/v/v) and n-butanol-acetic acid-H2O MiLi Q (60 : 20 : 20, v/v/v) for directions I and II, respectively. Two major glycolipids were revealed (G1 and G2), in addition to compounds characteristic of the polar lipid group and minor glycolipids (g), the latter being present in considerably lesser amounts.  相似文献   

14.
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) assays are usually performed by incubation of the enzyme with a labeled substrate followed by thin-layer chromatography separation and subsequent quantification of cholesteryl esters (CE) formed. Herein, a method is described for rapid separation of CE from other lipids, by elution from a silica gel column with a solvent mixture of petroleum ether/diethyl ether (98:2, v/v). Silica gel column chromatography is reliable and more rapid and safer than TLC. The best results were obtained when the reaction was stopped by Dole extraction followed by CE separation on a silica gel column. Assays for ACAT from rat intestinal microsomes showed that the specific activity values obtained using this method were reproducible and in good agreement with those obtained by conventional TLC method.  相似文献   

15.
A simple and sensitive column-switching high-performance liquid chromatographic method was developed for the simultaneous determination of omeprazole and its two main metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in human plasma. Omeprazole, its two metabolites and lansoprazol as an internal standard were extracted from 1 ml of alkalinized plasma sample using diethyl ether-dichloromethane (45:55, v/v). The extract was injected into a column I (TSK-PW precolumn, 10 microm, 35 mm x 4.6 mm i.d.) for clean-up and column II (Inertsil ODS-80A column, 5 microm, 150 mm x 4.6mm i.d.) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (92:8 v/v, pH 7.0) for clean-up and phosphate buffer-acetonitrile-methanol (65:30:5 v/v/v, pH 6.5) for separation, respectively. The peak was detected with an ultraviolet detector set at a wavelength of 302 nm, and total time for chromatographic separation was approximately 25 min. The validated concentration ranges of this method were 3-2000 ng/ml for omeprazole, 3-50 ng/ml for 5-hydroxyomeprazole and 3-1000 ng/ml for omeprazole sulfone. Mean recoveries were 84.3% for omeprazole, 64.3% for 5-hydroxyomeprazole and 86.1% for omeprazole sulfone. Intra- and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole, 4.6 and 5.0% for 5-hydroxyomeprazole and 4.6 and 4.9% for omeprazole sulfone at the different concentrations. The limits of quantification were 3 ng/ml for omeprazole and its metabolites. This method was suitable for use in pharmacokinetic studies in human volunteers, and provides a useful tool for measuring CYP2C19 activity.  相似文献   

16.
Abstract— White matter and purified myelin from cerebral tissue obtained at autopsy from four phenylketonuric and five non-phenylketonuric mentally-retarded patients were analysed for lipids, DNA and protein. The lipid composition of the white matter and myelin was compared with that of a representative non-myelin component of white matter, the crude mitochondrial fraction. The total lipid content was significantly lower and the ratio of cholesterol to galactolipid was significantly higher in the white matter from the PKU patients than in that from the non-PKU patients. The lipid compositions of the myelin and ‘mitochondrial’ fraction, although differing from each other, did not exhibit appreciable differences between the PKU and non-PKU brain samples. However, the amount of myelin recovered from the brains of the PKU patients was, on the average, 40 percent lower than that recovered from non-PKU brains. The abnormal cholesterol: galactolipid ratio of PKU white matter could be accounted for by the altered proportion of myelin to non-myelin lipid components. The finding in PKU brains of a normal composition of lipids in the purified myelin and the absence of cholesterol esters in the white matter suggest that the deficiency in myelin may reflect an early arrest of myelination.  相似文献   

17.
Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-[6-3H]galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment of the organelles with the nonpenetrating protease thermolysin. Envelope membranes isolated from thermolysin-treated chloroplasts of Spinacia oleracea L. (16:3 plant) and Pisum sativum L. (18:3 plant) or membranes isolated from thermolysin-treated chromoplasts are strongly reduced in galactolipid:galactolipid galactosyltransferase activity, but not with regard to UDP-Gal:diacylglycerol galactosyltransferase. For the intact plastids, this indicates that thermolysin treatment specifically blocks DGDG (and TGDG) synthesis, whereas MGDG synthesis is not affected. Neither in chloroplast nor in chromoplast membranes is DGDG synthesis stimulated by UDP-Gal. DGDG synthesis in S. oleracea chloroplasts is not stimulated by nucleoside 5′-diphospho digalactosides. Therefore, galactolipid:galactolipid galactosyltransferase is so far the only detectable enzyme synthesizing DGDG. These results conclusively suggest that the latter enzyme is located in the outer envelope membrane of different types of plastids and has a general function in DGDG synthesis, both in 16:3 and 18:3 plants.  相似文献   

18.
Esen A 《Plant physiology》1986,80(3):623-627
The prolamin of maize (Zea mays L.), zein, was extracted from endosperm meal with 60% (v/v) 2-propanol/1% (v/v) 2-mercaptoethanol either directly or subsequent to extraction with 90% (v/v) 2-propanol. The zein extracted with 90% 2-propanol was essentially made up of 20 to 24 kilodalton polypeptides (α-zein) while that extractable with 60% 2-propanol/1% 2-mercaptoethanol contained, in addition to α-zein, 17 to 18 kilodalton methionine-rich polypeptides and a 27 kilodalton proline-rich polypeptide. While zein was separated into three fractions by differential solubility in 90% 2-propanol and 30% 2-propanol/30 millimolar sodium acetate (pH 6) using two different fractionation protocols. Each of the three solubility fractions (SF1, SF2, and SF3) had a unique polypeptide composition. Based on results obtained from two inbreds, K55 and W64A, the SF1 constituted 75 to 80% of the total zein and included as major components 20 to 24 kilodalton polypeptides and a minor 10 kilodalton polypeptide. The SF2 made up 10 to 15% of the total zein and included exclusively 17 to 18 kD methionine-rich polypeptides. A 27 kilodalton proline-rich component constituted the SF3 and contributed 5 to 10% to total zein.  相似文献   

19.
应用高速逆流色谱分离桑枝酚类成分   总被引:1,自引:0,他引:1  
建立了高速逆流色谱(HsCCC)分离制备高纯度的桑枝酚类成分的新方法.分离条件如下:溶剂系统为正己烷-乙酸乙酯-甲醇冰(1∶1∶1∶2,v/v),上相为固定相,下相为流动相;流速2.0 mL/min;转速900rpm;进样量75 mg.收集得到三个高纯度化合物,经HPLC、MS、1H和13C NMR等分别鉴定为反式氧化白藜芦醇(25.2mg),反式白藜芦醇(7.4 mg)和桑辛素M(29.1 mg).高速逆流色谱可以高效分离桑枝成分,方法简便,技术可行,优于传统的柱色谱法.  相似文献   

20.
A simultaneous semi-micro column HPLC method with fluorescence detection of abused drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), amphetamine (AP) and methamphetamine (MP) in rat urine was examined by using 4-(N,N-dimethylaminosulphonyl)-7-fluoro-1,2,3-benzoxadiazole (DBD-F) as a labelling reagent and alpha-phenylethylamine as an internal standard (IS). A sample (50 microL) of rat urine was added to 5 microL IS and 100 microL 100 mmol/L borate buffer (pH 12) and extracted with 1.5 mL n-hexane. After evaporation, 50 microL 75 mmol/L borate buffer (pH 8.5) and 50 microL 20 mmol/L DBD-F in CH3CN were added to the residue and mixed well. The resultant solution was heated for 20 min at 80 degrees C and then cooled in an ice bath. A good separation of DBD-derivatives could be achieved within 45 min using a semi-micro ODS column with an eluent of CH3CN/CH3OH/10 mmol/L imidazole-HNO3 buffer (pH 7.0) (= 45:5:50, v/v/v %). The DBD derivatives were monitored at 565 nm with an excitation at 470 nm. The calibration curves showed good linearity (r = 0.997) with 0.5-15 ng/mL detection limits at a S/N ratio of 3. MDMA and MDA in rat urine could be monitored for 15 h after a single administration of MDMA to rat (2.0 mg/kg, i.p.). The concentrations for MDMA and MDA (n = 3) were 0.13-160.1 and 0.17-10.9 microg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号