首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Selective logging dominates forested landscapes across the tropics. Despite the structural damage incurred, selectively logged forests typically retain more biodiversity than other forest disturbances. Most logging impact studies consider conventional metrics, like species richness, but these can conceal subtle biodiversity impacts. The mass–abundance relationship is an integral feature of ecological communities, describing the negative relationship between body mass and population abundance, where, in a system without anthropogenic influence, larger species are less abundant due to higher energy requirements. Changes in this relationship can indicate community structure and function changes.
  2. We investigated the impacts of selective logging on the mass–abundance scaling of avian communities by conducting a meta‐analysis to examine its pantropical trend. We divide our analysis between studies using mist netting, sampling the understory avian community, and point counts, sampling the entire community.
  3. Across 19 mist‐netting studies, we found no consistent effects of selective logging on mass–abundance scaling relative to primary forests, except for the omnivore guild where there were fewer larger‐bodied species after logging. In eleven point‐count studies, we found a more negative relationship in the whole community after logging, likely driven by the frugivore guild, showing a similar pattern.
  4. Limited effects of logging on mass–abundance scaling may suggest high species turnover in logged communities, with like‐for‐like replacement of lost species with similar‐sized species. The increased negative mass–abundance relationship found in some logged communities could result from resource depletion, density compensation, or increased hunting; potentially indicating downstream impacts on ecosystem functions.
  5. Synthesis and applications. Our results suggest that size distributions of avian communities in logged forests are relatively robust to disturbance, potentially maintaining ecosystem processes in these forests, thus underscoring the high conservation value of logged tropical forests, indicating an urgent need to focus on their protection from further degradation and deforestation.
  相似文献   

2.
Passy SI 《Ecology letters》2012,15(9):923-934
The relationships of local population density (N) with body size (M) and distribution (D) have been extensively studied because they reveal how ecological and historical factors structure species communities; however, a unifying model explaining their joint behaviour, has not been developed. Here, I propose a theory that explores these relationships hierarchically and predicts that: (1) at a metacommunity level, niche breadth, population density and regional distribution are all related and size‐dependent and (2) at a community level, the exponents b and d of the relationships N ~ M  b and N ~ D  d are functions (f) of the environment and, consequently, species richness (S), allowing the following reformulation of the power laws: N ~ M  f(S) and N ~ D f(S) . Using this framework and continental data on stream environment, diatoms, invertebrates and fish, I address the following fundamental, but unresolved ecological questions: how do species partition their resources across environments, is energetic equivalence among them possible, are generalists more common than specialists, why are locally abundant species also regionally prevalent, and, do microbes have different biogeography than macroorganisms? The discovery that community scaling behaviour is environmentally constrained calls for better integration of macroecology and environmental science.  相似文献   

3.
  1. The enhancement of pest regulation service in crops depends for a large part on the capacity of agroecological practices to increase the presence of key species or functional traits in arthropod communities within fields.
  2. We investigated the effects of undestroyed strips of winter cover crops in maize fields on carabid community composition, and on the distribution of three ecological traits: diet, wing status and body size.
  3. We found that the community composition and the distribution of ecological traits in the in-field cover crop strips had commonalities with both adjacent cropped areas and field margins. Some species were recorded mostly or only in the strips indicating that strips could support carabid species and help increase local diversity from the first year of establishment.
  4. The activity-density of Poecilus cupreus and Pterostichus melanarius was higher in the cropped proximity of the strip, and the body size was influenced by the distance from the strip.
  5. Our results suggest that carabid communities are shaped by the habitat type, but the influence of such agroecological infrastructures on communities of adjacent crops is minor beyond a distance of 10 m. However, overall species abundance was increased and thus potentially provided enhanced pest regulation.
  相似文献   

4.
  • 1 The size–grain hypothesis ( Kaspari & Weiser, 1999 ) states that (1) as organisms decrease in size, they perceive their environment as being more rugose; (2) long legs allow organisms to step over obstacles but hinder them from entering small gaps; and (3) as the size of an organism decreases, the benefits of long legs begin to be outweighed by the costs of construction. Natural selection should therefore favour proportionally longer legs in larger organisms, thereby leading to a positive allometry between leg and body length (scaling exponent b > 1).
  • 2 Here we compare the scaling exponent of leg‐to‐body length relationships among insects that walk, walk and fly, and predominantly fly. We measured the lengths of the hind tibia, hind femur, and body length of each species.
  • 3 The taxa varied considerably in the scaling exponent b. In seven out of ten groups (Formicidae, Isoptera, Carabidae, Pentatomidae, Apidae, Lepidoptera, Odonata adult), b was significantly greater than one. However, there was no gradual decrease in b from walking to walking/flying to flying insects.
  • 4 The results of the present study provide no support for the size–grain hypothesis. We propose that leg length is not only affected by the rugosity of the environment, but also by (1) functional adaptations, (2) phylogeny, (3) lifestyle, (4) the type of insect development (hemimetabolism or holometabolism), and (5) constraints of gas exchange.
  相似文献   

5.
Sexual dimorphism and allometry in two seed beetles (Coleoptera: Bruchidae)   总被引:1,自引:0,他引:1  
Male Callosobruchus chinensis (Coleoptera: Bruchidae) have elaborated, pectinate antennae, which are absent from conspecific females and both sexes of a congener, Callosobruchus maculatus. To begin to unravel the mechanisms producing this striking dimorphism, we examined which morphological traits best explain body size variation in bruchid beetles and quantified sexual dimorphism of antenna size through allometric analyses. Using principal component analyses, we found that elytron length and pronotum width were significantly correlated with the first principal component, which was interpreted as explaining variation in body size. Regressions of log‐transformed body size measures on log‐transformed antenna length revealed that males of both species had longer antennae than conspecific females for any given body size, although most of this effect was attributable to higher intercepts, rather than increased allometry, in males. Comparisons among heterospecific males revealed that C. maculatus males have noticeably longer antennae than C. chinensis males at large body sizes. Callosobruchus chinensis males, thus, appear to have increased the receptive area of their antennae by adding to the width of, rather than further elongating, their antennae. Finally, we found evidence for positive allometry between log‐transformed antenna length and log‐transformed antenna width in C. chinensis males. We discuss our results in the context of evidence supporting the presence of an additional, and potentially unique, sex pheromone in C. chinensis females.  相似文献   

6.
7.
8.
9.
10.
11.
We examine how species richness and species‐specific plant density (number of species and number of individuals per species, respectively) vary within community size frequency distributions and across latitude. Communities from Asia, Africa, Europe, and North, Central and South America were studied (60°4′N–41°4′S latitude) using the Gentry data base. Log–log linear stem size (diameter) frequency distributions were constructed for each community and the species richness and species‐specific plant density within each size class were determined for each frequency distribution. Species richness in the smallest stem size class correlated with the Y‐intercepts (β‐values) of the regression curves describing each log–log linear size distributions. Two extreme community types were identified (designated as type A and type B). Type A communities had steep size distributions (i.e. large β‐values), log–log linear species‐richness size distributions, low species‐specific plant density distributions, and a small size class (2–4 cm) containing the majority of all species but rarely conspecifics of the dominant tree species. Type B communities had shallow size distributions (i.e. small β‐values), more or less uniform (and low) size class species‐ richness and species‐specific density distributions and size‐dominant species resident in the smallest size class. Type A communities were absent in the higher latitudes but increased in number towards the equator, i.e. in the smallest size class, species richness increased (and species‐specific density decreased) towards the tropics. Based on our survey of type A and type B communities (and their intermediates), species richness evinces size‐dependent and latitudinal trends, i.e. species richness increased with decreasing body size and most species increasingly reside in the smallest plant size class towards the tropics. Across all latitudes, a trade‐off exists between the number of species and the number of individuals per species residing in the smaller size classes.  相似文献   

12.
13.
  • 1 Dogs Canis familiaris are the world's most common carnivore and are known to interact with wildlife as predators, prey, competitors, and disease reservoirs or vectors.
  • 2 Despite these varied roles in the community, the interaction of dogs with sympatric wild carnivore species is poorly understood. We review how dogs have been classified in the literature, and illustrate how the location and ranging behaviour of dogs are important factors in predicting their interactions with wild prey and carnivores.
  • 3 We detail evidence of dogs as intraguild competitors with sympatric carnivores in the context of exploitative, interference and apparent competition.
  • 4 Dogs can have localized impacts on prey populations, but in general they are not exploitative competitors with carnivores. Rather, most dog populations are highly dependent on human‐derived food and gain a relatively small proportion of their diet from wild prey. However, because of human‐derived food subsidies, dogs can occur at high population densities and thus could potentially outcompete native carnivores, especially when prey is limited.
  • 5 Dogs can be effective interference competitors, especially with medium‐sized and small carnivores. Dogs may fill the role of an interactive medium‐sized canid within the carnivore community, especially in areas where the native large carnivore community is depauperate.
  • 6 Dogs can also be reservoirs of pathogens, because most populations around the world are free‐ranging and unvaccinated. Diseases such as rabies and canine distemper have resulted in severe population declines in several endangered carnivores coexisting with high‐density dog populations. Dogs can therefore be viewed as pathogen‐mediated apparent competitors, capable of facilitating large‐scale population declines in carnivores.
  • 7 Based on this information, we propose conceptual models that use dog population size and ranging patterns to predict the potential for dogs to be intraguild competitors. We discuss how interactions between dogs and carnivores might influence native carnivore communities.
  相似文献   

14.
The aim of this study was to examine the effects of various biological factors such as body mass, trophic level, climate and geography on census area in terrestrial mammals. We also examine the effects of census area on the population density–body mass relationship. The geographic areas covered in this study include most major terrestrial biomes including taïga, desert, savanna, grassland, tropical dry forest, temperate dry forest, tropical rain forest and temperate rain forest. An extensive literature search was conducted and we compiled data on census area and body mass from 377 mammalian populations and 59 communities. Statistical analyses include linear regression, Kruskal–Wallis analysis of variance, LOWESS, and multiple regression. Overall, the regression between log census area (A) and log body mass (M) yielded a slope of 0.710, which did not differ significantly from 0.75, but it was significantly different from 1.0. The analyses also showed that the log A–log M relationship is constrained within a well‐defined space in a similar fashion to the home range–body mass relationship. When mammals were separated into trophic groups, regression lines differed significantly in their intercepts, but not in slopes. At the community level, the census area was particularly affected by the population with the largest body mass within the community. Both the number of species and number of taxa encompassed by the community were found to be correlated positively with log A (r = 0.26, P = 0.0464 and r = 0.27, P = 0.0398, respectively). Sampling of mammalian species is not usually random. Not only is census area significantly associated with the technique used to sample a given species, but it is also influenced by biological factors that have been shown previously to influence population density. Striking similarities were found between the census area–body mass relationship and the home range–body mass relationship, suggesting that investigators may sample mammalian populations over areas that actually reflect the use of space of their focal species.  相似文献   

15.
Numerous coleopteran species express male‐specific “weapon traits” that often show size variations among males, even within a single population. Many empirical studies have demonstrated that environmental conditions during development affect absolute weapon size. However, relatively few studies in horned beetles support the hypothesis that the relationship between weapon size and body size, also referred to as a “scaling relationship” or “static allometry”, is largely determined by genetic factors. In this study, the heritability of absolute mandible length and static allometry between mandible length and body size were estimated in the stag beetle Cyclommatus metallifer. While no significant heritable variation was observed in absolute mandible length, high heritability (h2 = 0.57 ± 0.25) was detected in the static allometry between mandible length and body size. This is the first report on the genetic effect on male mandible size in Lucanidae, suggesting that absolute mandible size is largely determined by environmental conditions while the static allometry between weapon size and body size is primarily determined by genetic factors.  相似文献   

16.
17.
18.
Rabosky DL  Reid J  Cowan MA  Foulkes J 《Oecologia》2007,154(3):561-570
Both local and regional processes may contribute to community diversity and structure at local scales. Although many studies have investigated patterns of local or regional community structure, few have addressed the extent to which local community structure influences patterns within regional species pools. Here we investigate the role of body size in community assembly at local and regional scales in Ctenotus lizards from arid Australia. Ctenotus has long been noted for its exceptional species diversity in the Australian arid-zone, and previous studies have attempted to elucidate the processes underlying species coexistence within communities of these lizards. However, no consensus has emerged on the role of interspecific competition in the assembly and maintenance of Ctenotus communities. We studied Ctenotus communities at several hundred sites in the arid interior of Australia to test the hypothesis that body sizes within local and regional Ctenotus assemblages should be overdispersed relative to null models of community assembly, and we explored the relationship between body size dispersion at local and regional scales. Results indicate a striking pattern of community-wide overdispersion of body size at local scales, as measured by the variance in size ratios among co-occurring species. However, we find no evidence for body size overdispersion within regional species pools, suggesting a lack of correspondence between processes influencing the distribution of species phenotypes at local and regional scales. We suggest that size ratio constancy in Ctenotus communities may have resulted from contemporary ecological interactions among species or ecological character displacement, and we discuss alternative explanations for the observed patterns. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号